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Abstract

The purpose of this paper is to discuss the time component of an electromagnetic field, and to

have an advanced argument from the electromagnetic theory to the general theory of relativity.
The second purpose is to show that “the general theory of relativity” and “the Electromagnetic
and Gravitational theory” leads to the similar formulas.

The special theory of relativity is based on the Lorentz transformations and two postulates. The
Lorentz transformations are consisted of rotations in Minkowski space. Anti-de Sitter space
appears to be rolling up a Minkowski space which has constant negative scalar curvature. Vice
versa, tangent space of the anti-de Sitter space is a Minkowski space.

Therefore we stand in the position that the anti-de Sitter space is the space which we live in. Then

we are on a same ground as the general theory of relativity.

Contents
1. Preliminaries
1.1 The matrix-vector, calculation and its image
1.2 The Lorentz form and the figure of the imaginary angle ©®
1.3 Maxwell’s Equation and wave equation
1.4 The four-dimensional Coulomb—-Lorentz force

2. The tension in the electromagnetic field

~N oo BN R

3. Electromagnetic gravitational force

1. Preliminaries

1.1 The matrix-vector, calculation and its image

We identified the four-dimensional vector (ct,x,y,z)" e R** (Minkowski space) with the

Hermitian matrix.
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Let us call this expression (1) of vector a matrix-vector.
Note that this expression has a product between two matrix-vectors with simple matrix calculation.
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The underlined sections of expression (2) means that a single-underlined r-r’ is scalar product
and a double-underlined r xr’ is vector product.

This expression (2) has two features, one is the functionality as matrix and the other is the
simplicity as vector.
Furthermore these calculational images are as follows:
From expression (2), the matrix-vector expressed as
Time component(one-dim.)
{ Space component(three-dim.)}

Hence, e.g. the images of the time component

ab+ AsB is {a b }
A B

The images of the space component

aB+ Ab—iAxB is {aﬁ{g‘ and {a b }
Al 7 B] ALB

where, a, b, A, B are arbitrary vectors. The arrows and bold arrow are their map transformations

methods for the images of time component and space component.

This means that the scalar product and the vector product are not independent. Therefore there are
closely connections under the matrix product.

1.2 The Lorentz form and the figure of the imaginary angle ®

When a particle moves to the X —direction at the speed Vv, =V . The speed V is a scalar, then we

have the following relation:
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This Lorentz transformation has the representation of matrix-vector such as



’

ct'+x"y'+iz") (y@-B,)(ct+X) y+iz
(y’—iz’ ct’—xJ_ y—iz 7(1+B,)(ct—x)

(ri—7 0 Ct+x y+iz\(y, -7 0
Lo y.+7. \y—iz ct—x 0 7.+

where » — [(¥ +1)/2 =cosh(©/2), r = J(r —1)/2 =sinh(©®/2)

Therefore,
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(Cf. signature “—"’s of both upper sides correspond to the contravariance of vectors).
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Fig. 1 The figure of the imaginary angle @.

Figure 1 shows a schematic of the figure of the imaginary angle ® The four null values in the

Minkowski metric are shown in the four solid lines in Fig.1. The lines are called null lines. As to the

figure of ®, when the speed %:tanh(a is constant. Then by the formula dct/dz =ccosh®,
C

dx/dz =csinh®. We can put any point B(ctcosh®,ctsinh®) by usingthe ct and ©
Then the arc length L on the hyperbolic line from point A( ct ,0) to point B is

2 2
L=I® dx) _(det d@zctIG\/coshz®—sinh2®d®:ctjed®:ct®.
o\\de) de 0 0

(Cf. The arc length of the circle (Xx,y)=r(cosé,sin@) is
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Fig.2 The anti-de Sitter space.

We keep this circumstances and roll up this Minkowski space such as closing the point t =+ |,
t=—ooto each other. The conservation of their simultaneous reach surfaces and null lines on
Minkowski plane accords t=+o0. It is conceived of the image of an anti-de Sitter space. Figure 2
shows a schematic diagram of the anti-de Sitter space.

Hence, we get the anti-de Sitter space of which tangent space is the Minkowski space.

1.3 Maxwell’s Equation and wave equation

We introduce the time—component E, in the electromagnetic field E —icB, then we get the
four—dimensional electromagnetic field for the derivative of the scalar potential ¢ and the vector

potential cA as follows:
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where d/dr =o/oxe, +8/dye, + b/dze, and O/Oct are differential operators. e, , e, , e, are
orthogonal basis vectors.
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Moreover, we call a scalar density p=p,u,/c and a vector density j,/c= p,u/c as charge
density and current density stream. ¢ is an electric permittivity of the medium. These components

all together of four—dimensional vector compose a physical quantity.
Therefore, when p=0, j, =0, then we get the wave equation.



1.4 The four—-dimensional Coulomb-Lorentz force

The four-dimensional electromagnetic field receives the four-dimensional force on the charge
density p and the current density stream j, as follows™

7 Etp+(E—icB)-j—C5
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2. The tension in the electromagnetic field

We have the formula as follows!:
0
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in the electromagnetic field ' . , then the four-dimensional force is
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where we apply expression (3), and we have

0

e e e,
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or
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This means that
(i) The time component of the force f, (the variation of energy) is
f,=Ep+i(E—icB)(j,/c)
O(E +icB
= g(E[ {%+div(E + icB)}— (E- icB)-{%+grad E, +irot(E + icB)H.
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Moreover this real part is
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where S =E xcB is a Poynting vector. Therefore, when the field is (i) stationary and (ii) E, =0,

+gradE, - rotcB) - cB-( ocB +rot ED
oct

then this formula coincides with the divergence of a Poynting vector.

Fig. 3 Model geometry of the Poynting vector.



Example. This figure represents the Pointing vector S=ExcB=0
In this case, the field is stationary and Energy flow is free.
Therefore, divS =E, divE — E-gradE,.

Because, in this stationary case, we use the formula

E, :%+dich=dich, E—icB :—%—gradyﬁ—irotcA:—grad¢—irotcA.
C

Figure 3 shows a schematic diagram of a model geometry of the Poynting vector.

Then

f, =—E,p+(E ~icB)s(j,/c)
= ¢(E, div(E +icB) — (E —icB)+{grad E, +irot(E +icB)})
= ¢(E, div(—grad ¢ +irotcA) — (E —icB)+{graddivcA +irot(—grad ¢ +irotcA)})
=—¢E,0¢ - ¢(E —icB).-o0A=0.

(ii) The space component of the force (the variation of momentum) is

f =E j,/c+(E—icB)- p—i(E—icB)x j/c

= g[(E - icB)-{%+div(E + icB)}— E, ~{M+grad E +irot(E+ icB)}

+i(E —icB)x{W+grad E, +irot(E + icB)H.

Furthermore this real partis E, j,/c+E-p—cBx j,/c
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where g((E -divE —E xrot E)+(cB-divcB —cB x rotcB)) is Maxwell tension.

Hence, when the field is (i) stationary and (ii) E, =0, i.e. this formula coincides with the Maxwell

tension.

3. Electromagnetic gravitational force

For simplicity, the mass “M ”is stationary. Then from this potentialU =G,,M /r , we generate the

gravitational force as the same way as Coulomb-Lorentz force as follows!:



The gravitational field is
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We call this force electromagnetic gravitation. We set M, =GM/c*> where G is a

gravitational constant, then we get Newton type equations of motion as
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Moreover the metric is Minkowski metric ds® =-dct® +dr’> =—dct* +dx* +dy* +dz°.
In this system of equations, there are all information. We rewrite these equations of motion by the

spherical polar coordinate (r,8,¢) , thatis,

X =rsin&cos¢
y =rsingsing
Z=rcosé

Then we have the metric ds® =—dct> +dr? +r’(sin*0d ¢’ +d6?%).

Furthermore the equations of motion are

2
(El)d o —[drj(d“j .- (the direction of time),
dr )\dr

2 2
(EZ)LZ —(dCtj L [rdeJ +(rsin9d¢j -+ (the direction of radius),
dr dr dr dr

I
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dr\ dr dr dr
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and the following main equation (E5) which decides the orbit on the equator of the Sun in the anti-de

Sitter space. The subscript (real), the meaning of symbol = is equal to only the real part.
(real)
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Theorem.
The Einstein field equation is R, —Rg, /2=87GT, /C4 and the Schwarzschild metric

(solution) is

(G)ds? =—¢c? (I_ZMTG)dtZ +[1— 2'\36] dr?+ rz(sin2 0d ¢’ +d6’2)

2

2
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We take d’ct:Jl—ZMG/r dect to dct and d'r :1/./1—2M6/rdr to dr as corresponding.
Then this metric corresponds to a Minkowski metric.

(E)ds® = —dct® +dr? +r? (sin29d¢52 +d92).
Therefore, (G)and (E) are two metrics of the same style.

By the same correspondence, the equations of motion (E1)-(E4) and (E5) are very similar to the
following ones (G1)'- (G4)', (G5)' of the general theory of relativity.
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and the main equation is
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(Proof)
From the general relativity theory, the equations of the motion and the main equation are
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We apply the formula (G1), and obtain
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According to the formula (G2), we get
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From the formula (G3), we find that
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From the formula (G4), we see that
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Consequently, at last from the formula (G5), we know the main equation
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This means that from two different ways, we get the very close results B .

Q.|Q. o

2

The little difference between the formulas are covered by the imaginary part of (E3), (E4).

Conclusion

The authors generate the gravitational force by imitating the four-dimensional Coulomb—-Lorentz
force, and investigate the similarity and the difference between “the general theory of relativity” and
“the Electromagnetic and Gravitational theory”. The following conclusions are drawn:

(1) The authors mention the image of calculation of the matrix-vectors.

(2) It is shown that the figure of the imaginary angle ® in the Lorentz form.

(3) It is demonstrated that the four-dimensional vector product in the electromagnetic field.

(4) It is put to practical use of the four-dimensional Coulomb—-Lorentz force.

(5) The authors mention that the formulas between the general theory of relativity and the
electromagnetic theory are very similar.
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