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Abstract 

 

In the previous paper, we transformed the system of unit to the relativistic form, and found that 

the forces of coulomb and ampere are the same. We can take the common coefficient in the two 

forces. The next aim is the magnetic field and its source of magnetic charge. 

   We provided the imaginary charge and found that it means the magnetic monopole. We explain 

the difference between the dipole of magnetic charge and the dipole of the loop current. We consider 

the electric charge Q  as a complex charge 'q iq  and define its potential and field. 

   We expect that the knowledge for “matrix vector”, “relativistic form” and the Maxwell Equation 

is well known
[1]

. 

1. Introduction 

1.1 The magnetic charge and its System of Unit 

   We assume the existence of the magnetic charge. Then the Coulomb's law of the magnetic 

charge is 
1 2

2

m m
F k

r
 (Gauss). 

   This force can divides two formulas as follows: 

   The force in the magnetic field B  is (2) 2F k m B , and the magnetic field is 
1

(1) 2

m
B k

r
 . 

 

1.2 The magnetic dipole moment and magnetic loop dipole moment by a current loop 

(i) The magnetic dipole moment m  which points from the magnetic south pole towards the 
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magnetic north pole, has a magnitude 2ml , where the m is the strength of each magnetic pole and 

the 2l  is the distance between two magnetic poles. And then the potential ( )m r  and the field 

( )mH r  are 
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(ii) For the current loop, the magnetic loop dipole moment is 0l I Sm , where I  is the current 

in the loop and S  is an area of the loop. And then the magnetic field of the loop radius of which is 

a . 
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r ,

2 2r z a  . 

Then 
2

0 lI a  m m
.
 

 

 

2. The magnetic charge and the electric imaginary charge 

2.1 The imaginary charge 

   We consider the electric charge Q  as a complex charge i 'Q q q   formally, especially the 

pure imaginary charge i 'q . And we are going the same way as the real charge. 

   Then the pure imaginary charge i 'q
 

and its potential as “en bloc” are 
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Fig. 1. The image of magnetic dipole. 

Fig. 2. The image of loop dipole. 
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   Therefore, its electromagnetic field is 0tE   and 
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   Therefore 
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   And we can define the 4-dimensional force by using complex conjugate as 
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is the same as charge. 

For simplicity, we assume that the pure imaginary charge is not moving, i.e. stationary. Then the 

charge, potential, electromagnetic field and force as “en bloc” are 
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   The time component and the electric field are zero. 

   Moreover,
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   Then the force, 0tf  , 1 2
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q q
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r
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c
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 (1) 

is a coulomb type force. 

2.2 The identity with the magnetic charge 

   There exists the magnetic charge mq , and the magnetic force between two magnetic charges 1mq ,

2mq  is 

1 2 2 1

3 3

0 0 0 0

1

4 4 c c

m m m mq q q q

r r   

r r
F = = , this is the same type as the formula (1). 

   Moreover, we define the magnetic field ( )H r
 

as 
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   Then, 
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   This is the same type as pure imaginary charge, and then it is also the potential and the magnetic 

field. Therefore, we identify the imaginary part of the charge 'q  with the magnetic charge 

0c

mq


 . 
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And then 
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to each other. That is to say, this is a representation of the magnetic monopole (or magnetic charge) 

as mathematics.  

 

3. The magnetic dipole moment and the magnetic loop dipole moment 

3.1 The magnetic dipole moment 

   We consider the magnetic charge m apart from a center with distance l  and we put this vector 

( , , )x y zl l ll , 
2 2 2( ) ( ) ( )x y zl l l l   l . And we put the other two vectors from the 

magnetic charge or center to any point P  which are ( )Pr  and ( )PR respectively. And then 

( ) ( )P P R rl . 

   Next we calculate the magnetic dipole moment of two magnetic charges iq and iq with 

distance 2l  as follows: 

   We fixed the point P  and move the point of magnetic charge l . 

  The absolute value of ( )  r Rl l  is 
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   Generally, we use the “en bloc” formulas.  
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Fig. 3. The image of magnetic dipole. 
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   Then the absolute value r  is represented as 
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   We use the (relativistic) total differential, and then the double underlined part above is 

approximate to the following formula.  
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   In this situation, we replace s  as d d  s rl  and  0l . 
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   By the way, the value of potential is proportional to 
1

r
, and its variation by l  is 
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   And this underlined part is an approximate time component of the following “en bloc” formula 

(3). 
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   In this situation, we replace s  as d d  s rl  and  0l . 
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   Therefore, by use of formula (3), and we subtract the potential of magnetic charge 
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   Where, m  is magnetic charge, m  is magnetic dipole vector, 2s  is the distance between 

magnetic charge 
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i
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
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3.2 The magnetic loop dipole moment 

   We consider the current I (C/s) in conductor and moving charges with speed v (m/s). Then the 

current is dqI  sv (C/s) .  

   For simplicity, we assume that the charge d dqq x s  and its speed are homogeneous
[3]

. 

   We take the current I in a loop with radius l , then its vector potential is 
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   And this underlined part is an approximate space component of the following “en bloc” formula 
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   Therefore, from (4) in 3.1 or (6). 
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   This means that the magnetic field of magnetic loop dipole has twice the value of 

3
c [ ]

R
B m grad

R
. 

cf. (Einstein-de Haas effect) 

   The magnetic loop dipole moment is ( d ) ( d )
2 4

I q


   m s sl l ,

2

q
I






.

 

   And the angular momentum is ( d )
2

e
e

m
m




   I v sl l

.

 

   Therefore 
2 e

q

m
m I ,

108.79 10 /
2 e

q
coulomb kg

m
 

.

 

 

   Then the ratio 
2 e

q

m  

of the magnetic loop dipole moment to the angular momentum remains 

unchanged. 

3.3 The couples of magnetic dipole and magnetic loop dipole in the magnetic field 

   The couple of force of magnetic dipole is 

0 0 0
2

i

N
     

     
     

      N F s
 

0

0 0i1
2 c

ic4

m



 
    
               

 
B s

0
 

0

0 01

ic i4

   

   
     

     B m
,

0

2
c

mq


 m s

 

○

○ ○
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We get twice as much value in this formula.

 
   The couple of force of magnetic loop dipole is 

0 0 01

i d2

N
     

     
     

      N F s
 

0

0
0 01

d
ic4

2c

sI


 
    
               

 
B s

, d dI I ss

 

0

0 01

ic i4

   

   
     

     B m
, d

2c

I
 m s s

.

 

   We get twice as much value in this formula. 

 

4. Conclusion 

   One point is that in this time, the magnetic monopole is not found. But we can identify the pure 

imaginary charge with the monopole. Then we find that it works as a same action which is expected 

as a monopole. 

   Another point is that in the quantum mechanism magnitude of spin moment is about twice the 

magnitude of the orbital angular momentum. But in this paper, we calculate the twice as much value 

of the orbital angular momentum. This means Lande g-factor is about 1 value. 
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