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In this paper, we discuss the deduction of 4-dimensional equation of motion which 

is relativistic invariant. 

 

  Contents: 

 In §1 for preliminaries we mention the modified Maxwell’s equation in which we have 

the time-component of electromagnetic field and use the matrix-vector and 

relativistic form1). 

 

 In §2 we consider two forces which is caused by a charge and a mass respectively. 

These forces are similar in the inverse square law. We improve and push forward the 

similarity to the potential, field and force. 

 

 In §3 we can deduce the 4-dimensional equation of motion which is relativistic 
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invariant. And in the following paper, this equation contains Kepler’s Law and its 

complex components explain the relativistic effect. 

 

 

§1. Coulomb-Lorentz Force 

In the previous paper1), we can represented Maxwell’s equation and its force as a 

4-dimensional matrix vector. 

Let ic Ε B be an electric and magnetic field as a complex 3-dimensional field 

in space and t tE icB ( 0tB  ) the time-component. 

Then we have a relation of a matrix-vector between 4-dimensional potential 

( , ) A and electromagnetic field ( , )tE icE B  as follows: 

tE ct

ic c


     

     
     

       E B r A
 

divc
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A
grad rot A

・・・(*). 

Where signs “+”,”-“ mean relativistic invariant 1). 

We compare the components of this relation, then. 
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Where the above underlined part is a time-component. 

And we have a Lorenz gauge 0tE divc
ct


  


A  and a Coulomb gauge 

( 0)tE divc
ct


  


A . 

And the Maxwell’s equation is as follows: 

tct E

ic


     

     
     

       j r E B
 



3 

( )

( )
( )

t

t

E
div ic

ct

ic
E i ic

ct

 
 

  
  

     
 

E B

E B
grad rot E B

, 

(4)

0 (5)

(6) '

(7) '

t

t

c

ct

divc

E
div

ct

c E
ct




  







  



   

B
rotE 0

B

E

E
rot B grad j

　

. 

Where the above underlined part is a derivative of time-component. 

Therefore the Coulomb-Lorentz force to the moving charge in electromagnetic field 

is as follows: 

t tF E q
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・・・(**), 

          (the variation of energy)

( )   (the variation of momentum)

t t

t

F qE i c

q E c i qc

    


      

j E j B

F E j j B B j E
. 

Where the above underlined part is a complex force. 

 

 

§2. Coulomb-Lorentz force and gravitational one 

 

We consider the 4-dimensional potential 
0

1
( , , )

4

e
x y z

r



  ( 0 is a dielectric 

constant) and ( , , ) 0A x y z   which are caused by the stationary (negative) charge  

”－e”. 

Then the 4-dimensional electromagnetic field ( , )tE icE B  is given by the above 

formula (*), 



4 

0

0

1 0
1

4
4 ( )

0

t

e
E ct

r e
ic

r




   
                               

  
E B r

r

. 

Ｔhat is, the electric field is 
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1
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And the magnetic field and the time-component are  

B 0  and 0tE  . 

 

And we put 0 0
0 0( , ) ( , ) ( , )t

q q
q q q u

c c
  j β u  where t

dct
u c

d
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d
c

d



 

r
u β . 

Then by the above formula (**), the Coulomb-Lorentz force which acts on the moving 

charge ( , )q j  in the electromagnetic field is 
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The above underlined part is a complex force. 

 

We compare this force and the gravitational one which is caused by the stationary mass 

“M ” (for simplicity) as follows: 

The relation of its potential
2

G M
U

c r
  and gravitation force f  is 
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0
0 0 2
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U U Gm M
m m u

c r


  
 

  
f

r r r
≒ . 

Where 
2

1
( 1)

1 ( )

tu dct

c cd v

c




  



≒ , G  is a gravitational constant and c  is a light 

velocity. 

This gravitational force f  is quite similar to the real part of the Coulomb-Lorentz 

one 0

0

( )
4

t

q e
u

c r





F

r
-i(imaginary part). 

Therefore, we get the 4-dimentional force ( , )tf f  which is caused by the stationary 

mass “M ”, that is, the potential is 
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And its gravitational field is 
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Therefore we get the 4-dimentional gravitational force as follows; 
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That is, 



6 

0

3

0 0

3 3

( )           (the variation of energy)

( ) ( )    (the variation of momentum)

t

t

Gm M
f

c r

Gm M Gm M
u i

c r c r


  


 

   
 

u
r

f u
r r

. 

The above underlined part is a complex force and its interpretation is in the 

following paper. 

 

§3. The 4-dimensional equation of motion which is relativistic invariant 

 

In the above discussion, we had correspond the source (negative) charge “－e ” to 

the source mass M , the moving charge 0 0( , ) ( , )q q q j  to  the moving mass 

0 0( , ) m m  and the constant 
0

1

4πε
 of the Coulomb-Lorentz force to the 

gravitational constant 
2c

G
. 

Then we get the modified equation of motion. 

 

Theorem 1 

The equation of motion which is relativistic invariant is 

2

2 2

2
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Proof 

We replace 
04

Q e

r r
  (potential of “negative” stationary charge), ( , )q j  which is 

“positive moving charge” as 
2

GM GM

r c r
   (potential of stationary mass), 

0 0( , ) m m  which is “moving mass” in the formula (***). 

And by this replacement, we get the 4-dimensional gravitational force as follows: 
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G
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Where the underlined part is a 4-dimensional gravitational field. 
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And we integrate this formula by time then 
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means a variation of energy-momentum 
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Therefore we get the modified equation of motion as follows; 
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Q.E.D. 
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We can rewrite the coordinate ( , , )x y z  by the spherical polar coordinate ( , , )r   ,that 

is, 

sin cos

sin sin

cos

x r

y r

z r

 

 







 

. 

Then we get 

Corollary 2 

The equation of motion at the spherical polar coordinate is  

2
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2
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2
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Proof: 

(1) :ct Formula (1) is the same one  

And by the proposition 3 below, we get the formulas (2) , (3) , (4)r    as follows: 

By the theorem 1 

2
2

2 2 2
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. 

(2) :r The component of -r direction is 

2

2r

d

d





r r

r

2

2
( )GM dct

r d
   (where “ ” is an inner product.). 

Therefore by the proposition 3. ( )r ,we get  

2 2 2 2

2
( ) sinGM dct

r r r
r d
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(3) :  The component of rdθ direction is 

2

2

d

d





r rdθ

rdθ
2

( sin )GM d dct
i r

r d d




 
  . 

Therefore by the proposition 3. ( ) ,we get 

2

2
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dr d d d d d
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(4) :  The component of sin -r dφ direction is 

2
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2
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 . 

Therefore by the proposition 3. ( ) ,we get 

2
( ) 2 sin sin 2 cosGM d dct
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r d d d d d d
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Q.E.D. 
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Proposition 3 

The acceleration vector at the spherical polar coordinate is 

2 2 2

2
2

2

sin

2 sin cos

2 sin sin 2 cos

r r r r
d

r r r
d

r r r





   

     


      

    
  

     
       

r
. 

Proof 

We use the spherical polar coordinate ( , , )r   . 

Let’s ( )    and ( )    (the function of proper time  ) 

be two angles as a right figure. 

Then the spherical polar coordinate ( , , )r    is 

sin cos

sin sin

cos

x r

y r

z r

 

 







 

. 

And we can represent the position vector as follows; 

cos sin 0 cos 0 sin 0

sin cos 0 0 1 0 0

0 0 1 sin 0 cos

x

y

z r

   

 

 

     
     

      
          

r . 

And let’s ( )
d

d


 


  and ( )

d

d


 


  be derivatives by the parameter  (proper time). 

Then we can represent the velocity vector as follows; 

sin cos 0 cos 0 sin 0

cos sin 0 0 1 0 0

0 0 0 sin 0 cos

x

y

z r

   

 

  

      
     

       
          

r  

cos sin 0 sin 0 cos 0

sin cos 0 0 0 0 0

0 0 1 cos 0 sin r

   

 

  

    
   

   
       

 

cos sin 0 cos 0 sin 0

sin cos 0 0 1 0 0

0 0 1 sin 0 cos r
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sinr d   
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z

 

y
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cos sin 0 cos 0 sin 0 0

sin cos 0 0 1 0 sin 0 0

0 0 1 sin 0 cos 0 0

r

r

r

    

   

 

        
        

          
                

 

cos sin 0 cos 0 sin

sin cos 0 0 1 0 sin

0 0 1 sin 0 cos

r

r

r

    

   

 

   
   

    
      

. 

For this calculation, we used the following relation; 

sin cos 0 cos sin 0 0 1 0

cos sin 0 sin cos 0 1 0 0

0 0 0 0 0 1 0 0 0

   

   

       
    

     
    
    

, 

0 1 0 cos 0 sin cos 0 sin 0 cos 0

1 0 0 0 1 0 0 1 0 cos 0 sin

0 0 0 sin 0 cos sin 0 cos 0 sin 0

    

 

    

      
     

     
            

. 

And  

sin 0 cos cos 0 sin 0 0 1

0 0 0 0 1 0 0 0 0

cos 0 sin sin 0 cos 1 0 0

   

   

    
    

    
           

 

Therefore 

sin

r

v r

v r

v r









  
  

   
   
   

 

is a velocity vector at the spherical polar coordinate. 

And let’ s 
2

2
( )

d
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  and 

2

2
( )

d

d


 


  be double derivatives by the parameter 

 (proper time). 

Then we can represent the acceleration vector as follows; 

2

sin cos 0 cos 0 sin

cos sin 0 0 1 0 sin

0 0 0 sin 0 cos

x r

y r

z r

    

   

  

      
     

        
          

r  
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2 2 2

cos sin 0 cos 0 sin 2 sin cos
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. 

Therefore 

2

2 2 2

2 sin cos

2 sin sin 2 cos
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is an acceleration vector at the spherical polar coordinate. 

 

Q.E.D. 
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