<u> 重力方程式と電磁力</u> (相対論的不変性を保持して)

The Equation of Gravitational Force

and

the Electromagnetic Force

(under the relativistic invariant)

Yoshio TAKEMOTO

Department of Mechanical and Electrical Engineering, School of

Engineering,

Nippon Bunri University

Abstract

In this paper, we discuss the deduction of 4-dimensional equation of motion which is relativistic invariant.

Contents:

In §1 for preliminaries we mention the modified Maxwell's equation in which we have the time-component of electromagnetic field and use the **matrix-vector** and **relativistic form**¹⁾.

In §2 we consider two forces which is caused by a charge and a mass respectively. These forces are similar in the inverse square law. We improve and push forward the similarity to the potential, field and force.

In §3 we can deduce the 4-dimensional equation of motion which is relativistic

invariant. And in the following paper, this equation contains Kepler's Law and its complex components explain the relativistic effect.

§1. Coulomb-Lorentz Force

In the previous paper¹⁾, we can represented Maxwell' s equation and its force as a 4-dimensional matrix vector.

Let $\mathbb{E} = \mathbf{E} - ic\mathbf{B}$ be an electric and magnetic field as a complex 3-dimensional field in space and $E_t - icB_t (B_t = 0)$ the time-component.

Then we have a relation of **a matrix-vector** between 4-dimensional potential (ϕ, \mathbf{A}) and electromagnetic field $(E_t, \mathbf{E} - ic\mathbf{B})$ as follows:

$$\mathbf{E} = \begin{bmatrix} \mathbf{E}_{t} & \\ \mathbf{E} - ic\mathbf{B} \end{bmatrix}^{+} = \begin{bmatrix} \partial ct & \\ & -\partial \mathbf{r} \end{bmatrix}^{-+} \begin{pmatrix} \phi & \\ & -c\mathbf{A} \end{pmatrix}^{+} = \begin{bmatrix} \frac{\partial \phi}{\partial ct} + divc\mathbf{A} & \\ & -\frac{\partial c\mathbf{A}}{\partial ct} - \mathbf{grad}\phi - i\mathbf{rot}c\mathbf{A} \end{bmatrix}^{+} \cdot \cdot \cdot (*).$$

Where signs "+","-" mean relativistic invariant $^{\rm 1)}.$ We compare the components of this relation, then.

$$\begin{cases} \underline{E_t} = \frac{\partial \phi}{\partial ct} + divc \mathbf{A} \cdots (1)' \\ \mathbf{E} = -\frac{\partial c \mathbf{A}}{\partial ct} - \mathbf{grad} \phi \cdots (2) \\ c \mathbf{B} = \mathbf{rot} c \mathbf{A} \cdots (3) \end{cases}$$

Where the above underlined part is a **time-component**.

And we have a Lorenz gauge $E_t = \frac{\partial \phi}{\partial ct} + divc\mathbf{A} = 0$ and a Coulomb gauge $E_t = \frac{\partial \phi}{\partial ct}$

$$E_t = \frac{\partial \phi}{\partial ct} \iff divc\mathbf{A} = 0) \,.$$

And the Maxwell' s equation is as follows:

$$\begin{pmatrix} \rho \\ & -\mathbf{j} \end{pmatrix}^{+} = \begin{pmatrix} \partial ct \\ & \partial \mathbf{r} \end{pmatrix}^{+} \begin{pmatrix} E_{t} \\ & \mathbf{E} - ic\mathbf{B} \end{pmatrix}^{+}$$

$$= \begin{pmatrix} \frac{\partial E_t}{\partial ct} + div(\mathbf{E} - ic\mathbf{B}) \\ \frac{\partial (\mathbf{E} - ic\mathbf{B})}{\partial ct} + \mathbf{grad}E_t - i\mathbf{rot}(\mathbf{E} - ic\mathbf{B}) \end{pmatrix}^+$$

$$\begin{cases} \mathbf{rot}\mathbf{E} + \frac{\partial c\mathbf{B}}{\partial ct} = \mathbf{0} \cdots (4) \\ divc\mathbf{B} = \mathbf{0} \cdots (5) \\ div\mathbf{E} + \frac{\partial E_t}{\partial ct} = \rho \cdots (6)' \\ \mathbf{rot}c\mathbf{B} - \frac{\partial \mathbf{E}}{\partial ct} - \underline{\mathbf{grad}} E_t = \mathbf{j} \cdots (7)' \end{cases}$$

Where the above underlined part is a derivative of time-component.

Therefore the Coulomb-Lorentz force to the moving charge in electromagnetic field is as follows:

$$\begin{bmatrix} F_t \\ \mathbf{F} \end{bmatrix}^{-} = \begin{bmatrix} E_t \\ \mathbf{E} - ic\mathbf{B} \end{bmatrix}^{+} \begin{bmatrix} q \\ \mathbf{j} \end{bmatrix}^{-}$$
$$= \begin{bmatrix} E_t q + (\mathbf{E} - ic\mathbf{B}) \cdot \mathbf{j} \\ E_t \mathbf{j} + (\mathbf{E} - i\underline{c}\mathbf{B}) \cdot q - i(\mathbf{E} - ic\mathbf{B}) \times \mathbf{j} \end{bmatrix}^{-} \cdot \cdot \cdot (**),$$
$$\begin{bmatrix} F_t = qE_t + \mathbf{j} \cdot \mathbf{E} - i\mathbf{j} \cdot c\mathbf{B} \\ \mathbf{F} = q\mathbf{E} + \mathbf{j}E_t + \mathbf{j} \times c\mathbf{B} - i(\underline{q}c\mathbf{B} - \mathbf{j} \times \mathbf{E}) \end{bmatrix} \text{ (the variation of momentum)}^{+}$$

Where the above underlined part is a complex force.

§2. Coulomb-Lorentz force and gravitational one

We consider the 4-dimensional potential $\phi(x, y, z) = -\frac{1}{4\pi\varepsilon_0} \frac{e}{r}$ (ε_0 is a dielectric constant) and A(x, y, z) = 0 which are caused by the stationary (**negative**) charge "-e".

Then the 4-dimensional electromagnetic field $(E_t, \mathbf{E} - ic\mathbf{B})$ is given by the above formula (*),

$$\begin{bmatrix} E_t \\ \mathbf{E} - ic\mathbf{B} \end{bmatrix}^+ = \begin{bmatrix} \partial ct \\ -\partial \mathbf{r} \end{bmatrix}^- \begin{bmatrix} -\frac{1}{4\pi\varepsilon_0} \frac{e}{r} \\ 0 \end{bmatrix}^+ = \frac{1}{4\pi\varepsilon_0} \begin{bmatrix} 0 \\ \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) \end{bmatrix}^+.$$

That is, the electric field is

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{r}\right) = -\frac{e}{4\pi\varepsilon_0 r^2} \frac{\mathbf{r}}{r}.$$

And the magnetic field and the time-component are

 $\mathbf{B} = \mathbf{0}$ and $E_t = \mathbf{0}$.

And we put $(q, \mathbf{j}) = (q_0 \gamma, q_0 \gamma \beta) = (\frac{q_0}{c} u_t, \frac{q_0}{c} \mathbf{u})$ where $u_t = \frac{dct}{d\tau} = c\gamma$, $\mathbf{u} = \frac{d\mathbf{r}}{d\tau} = c\gamma\beta$.

Then by the above formula (**), the **Coulomb-Lorentz force** which acts on the moving charge (q, \mathbf{j}) in the electromagnetic field is

$$\begin{bmatrix} F_{t} \\ F \end{bmatrix}^{-} = \begin{bmatrix} \partial ct \\ -\partial \mathbf{r} \end{bmatrix}^{-} \begin{bmatrix} -\frac{1}{4\pi\varepsilon_{0}} \frac{e}{r} \\ 0 \end{bmatrix}^{+} \frac{q_{0}}{c} \begin{bmatrix} u_{t} \\ \mathbf{u} \end{bmatrix}^{-}$$

$$= \frac{1}{4\pi\varepsilon_{0}} \begin{bmatrix} 0 \\ \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) \end{bmatrix}^{+} \frac{q_{0}}{c} \begin{bmatrix} u_{t} \\ \mathbf{u} \end{bmatrix}^{-}$$

$$= \frac{q_{0}}{4\pi\varepsilon_{0}c} \begin{bmatrix} \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) \cdot \mathbf{u} \\ \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) u_{t} - i\frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) \times \mathbf{u} \end{bmatrix}^{-}$$

$$= \frac{q_{0}}{4\pi\varepsilon_{0}c} \begin{bmatrix} \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) \cdot \mathbf{u} \\ \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) u_{t} - i\frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) \times \mathbf{u} \end{bmatrix}^{-}$$

$$\begin{cases} F_t = \frac{q_0}{4\pi\varepsilon_0 c} \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) \cdot \mathbf{u} & \text{(the variation of energy)} \\ \mathbf{F} = \frac{q_0}{4\pi\varepsilon_0 c} \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) u_t - i \frac{q_0}{4\pi\varepsilon_0 c} \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) \times \mathbf{u} & \text{(the variation of momentum)} \end{cases}$$

The above underlined part is a complex force.

We compare this force and the gravitational one which is caused by the stationary mass "M" (for simplicity) as follows:

The relation of its potential
$$U = \frac{G}{c^2} \frac{M}{r}$$
 and gravitation force **f** is

$$\mathbf{f} = m_0 \frac{\partial U}{\partial \mathbf{r}} \stackrel{\leftarrow}{=} m_0 \frac{\gamma}{c} \frac{\partial U}{\partial \mathbf{r}} = \frac{Gm_0}{c^2} \frac{\partial}{\partial \mathbf{r}} (\frac{M}{r}) u_t.$$
Where $\gamma = \frac{u_t}{c} = \frac{dct}{cd\tau} = \frac{1}{\sqrt{1 - (\frac{v}{c})^2}} (\stackrel{\leftarrow}{=} 1), G$ is a gravitational constant and c is a light

velocity.

This gravitational force **f** is quite similar to the real part of the Coulomb-Lorentz one $\mathbf{F} = \frac{q_0}{4\pi\varepsilon_0 c} \frac{\partial}{\partial \mathbf{r}} (\frac{e}{r}) u_t$ -i(imaginary part).

Therefore, we get the 4-dimentional force (f_t, \mathbf{f}) which is caused by the stationary mass "M", that is, the potential is

$$\begin{pmatrix} U \\ \mathbf{0} \end{pmatrix}^{+} = \begin{pmatrix} -\frac{G}{c^{2}}\frac{M}{r} \\ 0 \end{pmatrix}$$

which is corresponding to
$$\begin{pmatrix} -\frac{1}{4\pi\varepsilon_0}\frac{e}{r} \\ 0 \end{pmatrix}^+$$
.

And its gravitational field is

$$\left[\begin{pmatrix} \partial ct \\ & -\partial \mathbf{r} \end{pmatrix}^{-} \left(-\frac{G}{c^2} \frac{M}{r} \\ & 0 \end{pmatrix}^{+} = \frac{G}{c^2} \left[\begin{pmatrix} 0 \\ & \frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r} \right) \right]^{+} \right]$$

Therefore we get the 4-dimentional gravitational force as follows;

$$\begin{pmatrix} f_t \\ \mathbf{f} \end{pmatrix}^{-} = \begin{bmatrix} \partial ct \\ -\partial \mathbf{r} \end{bmatrix}^{-+} \begin{pmatrix} -\frac{G}{c^2} \frac{M}{r} \\ 0 \end{pmatrix}^{+} \frac{q_0}{c} \begin{bmatrix} u_t \\ \mathbf{u} \end{bmatrix}^{-}$$
$$= \frac{G}{c^2} \begin{bmatrix} 0 \\ \frac{\partial}{\partial \mathbf{r}} (\frac{M}{r}) \end{pmatrix}^{+} \frac{m_0}{c} \begin{bmatrix} u_t \\ \mathbf{u} \end{bmatrix}^{-}$$
$$= \frac{Gm_0}{c^3} \begin{bmatrix} \frac{\partial}{\partial \mathbf{r}} (\frac{M}{r}) \cdot \mathbf{u} \\ \frac{\partial}{\partial \mathbf{r}} (\frac{M}{r}) u_t - i \frac{\partial}{\partial \mathbf{r}} (\frac{M}{r}) \times \mathbf{u} \end{bmatrix}^{-} .$$

That is,

$$\begin{cases} f_t = \frac{Gm_0}{c^3} \frac{\partial}{\partial \mathbf{r}} (\frac{M}{r}) \cdot \mathbf{u} & \text{(the variation of energy)} \\ \mathbf{f} = \frac{Gm_0}{c^3} \frac{\partial}{\partial \mathbf{r}} (\frac{M}{r}) u_t - i \frac{Gm_0}{c^3} \frac{\partial}{\partial \mathbf{r}} (\frac{M}{r}) \times \mathbf{u} & \text{(the variation of momentum)} \end{cases}$$

The above underlined part is a **complex force** and its interpretation is in the following paper.

3. The 4-dimensional equation of motion which is relativistic invariant

In the above discussion, we had correspond the source (**negative**) charge "-e" to the source mass M, the moving charge $(q, \mathbf{j}) = (q_0 \gamma, q_0 \gamma \beta)$ to the moving mass $(\mathbf{m}_0 \gamma, \mathbf{m}_0 \gamma \beta)$ and the constant $\frac{1}{4\pi\epsilon_0}$ of the Coulomb-Lorentz force to the gravitational constant $\frac{\mathbf{G}}{c^2}$.

Then we get the modified equation of motion.

 $\frac{\text{Theorem 1}}{\text{The equation of motion which is relativistic invariant is}} \begin{cases} \frac{d^2 ct}{d\tau^2} = -\frac{M_G}{r^2} (\frac{\mathbf{r}}{r} \cdot \frac{d\mathbf{r}}{d\tau}) \frac{dct}{d\tau} \cdots (1)_{ct} \\ \frac{d^2 \mathbf{r}}{d\tau^2} = -\frac{M_G}{r^2} \frac{\mathbf{r}}{r} (\frac{dct}{d\tau})^2 + i \frac{M_G}{r^2} (\frac{\mathbf{r}}{r} \times \frac{d\mathbf{r}}{d\tau}) \frac{dct}{d\tau} \cdots (2)_r + i \{(3)_\theta + (4)_\phi\} \end{cases}.$

Proof

We replace $\frac{Q}{r} = -\frac{e}{4\pi\varepsilon_0 r}$ (potential of "negative" stationary charge), (q, \mathbf{j}) which is

"positive moving charge" as $-\frac{M_G}{r} = -\frac{GM}{c^2 r}$ (potential of stationary mass),

 $(\mathbf{m}_0\gamma,\mathbf{m}_0\gamma\beta)$ which is "moving mass" in the formula (***).

And by this replacement, we get the 4-dimensional gravitational force as follows:

$$\begin{bmatrix} f_t \\ f \end{bmatrix}^{-} = \begin{bmatrix} \partial ct \\ -\partial \mathbf{r} \end{bmatrix}^{-+} \begin{bmatrix} -\frac{M_G}{r} \\ 0 \end{bmatrix}^{+} \frac{m_0}{c} \begin{bmatrix} u_t \\ u \end{bmatrix}^{-}, \quad \frac{M_G}{r} = \frac{GM}{c^2 r}.$$

Where the underlined part is a 4-dimensional gravitational field.

And we integrate this formula by time then

$$\int_{t_0}^{t} \left(\begin{array}{c} f_t \\ \mathbf{f} \end{array} \right)^{-} c dt = \int_{t_0}^{t} \left(\begin{array}{c} \partial c t \\ -\partial \mathbf{r} \end{array} \right)^{-} \left(\begin{array}{c} -\frac{M_G}{r} \\ \mathbf{0} \end{array} \right)^{+} \frac{m_0}{c} \left(\begin{array}{c} u_t \\ \mathbf{u} \end{array} \right)^{-} c dt$$

means a variation of energy-momentum

$$\begin{bmatrix} -\begin{pmatrix} m_0 \gamma & \\ & m_0 \gamma \beta \end{bmatrix}_{t_0}^{-} \end{bmatrix}_{t_0}^{t} \cdot$$

Therefore we get the modified equation of motion as follows;

$$m_{0} \frac{d}{d\tau} \begin{bmatrix} \frac{dct}{d\tau} & \\ & \frac{d\mathbf{r}}{d\tau} \end{bmatrix}^{-} = c \frac{d}{d\tau} \begin{bmatrix} m_{0} \gamma & \\ & m_{0} \gamma \beta \end{bmatrix}^{-}$$
$$= -M_{G} m_{0}^{-} \begin{pmatrix} \partial ct & \\ & -\partial \mathbf{r} \end{pmatrix}^{-} \begin{bmatrix} \frac{1}{r} & \\ & 0 \end{pmatrix}^{+} \begin{bmatrix} \frac{dct}{d\tau} & \\ & \frac{d\mathbf{r}}{d\tau} \end{bmatrix}^{-} \frac{dct}{d\tau}$$
$$= -\frac{M_{G} m_{0}}{r^{2}} \begin{bmatrix} (\frac{\mathbf{r}}{r} \cdot \frac{d\mathbf{r}}{d\tau})(\frac{dct}{d\tau}) & \\ & \frac{\mathbf{r}}{r}(\frac{dct}{d\tau})^{2} - i(\frac{\mathbf{r}}{r} \times \frac{d\mathbf{r}}{d\tau})(\frac{dct}{d\tau}) \end{bmatrix}^{-}.$$

Q.E.D.

We can rewrite the coordinate (x, y, z) by the spherical polar coordinate (r, θ, ϕ) , that is,

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}$$

Then we get

<u>Corollary 2</u>

The equation of motion at the spherical polar coordinate is

$$\begin{cases} \frac{d^2 ct}{d\tau^2} = -\frac{M_G}{r^2} \frac{dr}{d\tau} \frac{dct}{d\tau} \cdots (1)_{ct} \\ \frac{d^2 r}{d\tau^2} = -\frac{M_G}{r^2} (\frac{dct}{d\tau})^2 + \frac{1}{r} (r\frac{d\theta}{d\tau})^2 + \frac{1}{r} (r\sin\theta\frac{d\phi}{d\tau})^2 \cdots (2)_r \\ \frac{d}{d\tau} (r\frac{d\theta}{d\tau}) = -i \frac{M_G}{r^2} (r\sin\theta\frac{d\phi}{d\tau}) \frac{dct}{d\tau} - \frac{1}{r} \frac{dr}{d\tau} (r\frac{d\theta}{d\tau}) + \cos\theta\frac{d\phi}{d\tau} (r\sin\theta\frac{d\phi}{d\tau}) \cdots i(3)_{\theta} \\ \frac{d}{d\tau} (r\sin\theta\frac{d\phi}{d\tau}) = i \frac{M_G}{r^2} (r\frac{d\theta}{d\tau}) \frac{dct}{d\tau} - \frac{1}{r} \frac{dr}{d\tau} (r\sin\theta\frac{d\phi}{d\tau}) - \cos\theta (r\frac{d\theta}{d\tau}) \frac{d\phi}{d\tau} \cdots i(4)_{\phi} \end{cases}$$

Proof:

 $(1)_{ct}$: Formula (1) is the same one

And by the proposition 3 below, we get the formulas $(2)_r, (3)_{\theta}, (4)_{\phi}$ as follows:

,

By the theorem 1

$$\frac{d^{2}\mathbf{r}}{d\tau^{2}} = -\frac{M_{G}}{r^{2}} \frac{\mathbf{r}}{r} (\frac{dct}{d\tau})^{2} + i \frac{M_{G}}{r^{2}} (\frac{\mathbf{r}}{r} \times \frac{d\mathbf{r}}{d\tau}) \frac{dct}{d\tau} \cdot \cdot (2)_{r} + i \{(3)_{\theta} + (4)_{\phi}\}$$
$$\frac{d\mathbf{r}}{d\tau} = \begin{pmatrix} v_{r} \\ v_{\theta} \\ v_{\phi} \end{pmatrix} = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \\ r\sin\theta\dot{\phi} \end{pmatrix} \text{ and } \frac{\mathbf{r}}{r} \times \frac{d\mathbf{r}}{d\tau} = \begin{pmatrix} 0 \\ -r\sin\theta\dot{\phi} \\ r\dot{\theta} \end{pmatrix}.$$

 $(2)_r$: The component of **r**-direction is

$$\alpha_r = \frac{d^2 \mathbf{r}}{d\tau^2} \cdot \frac{\mathbf{r}}{|\mathbf{r}|} = -\frac{M_G}{r^2} (\frac{dct}{d\tau})^2 \quad \text{(where "\bullet" is an inner product.)}.$$

Therefore by the proposition 3. (α_r) ,we get

$$-\frac{M_G}{r^2}(\frac{dct}{d\tau})^2 = \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2\sin^2\theta$$

_

$$=\frac{d^2r}{d\tau^2}-\frac{1}{r}(r\frac{d\theta}{d\tau})^2-\frac{1}{r}(r\sin\theta\frac{d\phi}{d\tau})^2.$$

(3) $_{\theta}$: The component of $\mathbf{rd}\theta$ direction is

$$\alpha_{\theta} = \frac{d^2 \mathbf{r}}{d\tau^2} \cdot \frac{\mathbf{r} \mathbf{d} \theta}{|\mathbf{r} \mathbf{d} \theta|} = -i \frac{M_G}{r^2} (r \sin \theta \frac{d\phi}{d\tau}) \frac{dct}{d\tau}.$$

Therefore by the proposition 3. (α_{θ}) , we get

$$-i\frac{M_G}{r^2}(r\sin\theta\frac{d\phi}{d\tau})\frac{dct}{d\tau} = 2\dot{r}\dot{\theta} + r\ddot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta$$
$$= \frac{1}{r}\frac{dr}{d\tau}(r\frac{d\theta}{d\tau}) + \frac{d}{d\tau}(r\frac{d\theta}{d\tau}) - \cos\theta\frac{d\phi}{d\tau}(r\sin\theta\frac{d\phi}{d\tau}).$$

(4)_{ϕ}: The component of $r \sin \theta \mathbf{d} \mathbf{\phi}$ -direction is

$$\alpha_{\phi} = \frac{d^2 \mathbf{r}}{d\tau^2} \cdot \frac{\mathbf{rsin}\theta d\boldsymbol{\varphi}}{|\mathbf{rsin}\theta d\boldsymbol{\varphi}|} = i \frac{M_G}{r^2} (r \frac{d\theta}{d\tau}) \frac{dct}{d\tau} \,.$$

Therefore by the proposition 3. (α_{ϕ}) ,we get

$$i\frac{M_G}{r^2}(r\frac{d\theta}{d\tau})\frac{dct}{d\tau} = 2\dot{r}\dot{\phi}\sin\theta + r\ddot{\phi}\sin\theta + 2r\dot{\phi}\dot{\theta}\cos\theta$$
$$= \frac{1}{r}\frac{dr}{d\tau}(r\sin\theta\frac{d\phi}{d\tau}) + \frac{d}{d\tau}(r\sin\theta\frac{d\phi}{d\tau}) + \cos\theta(r\frac{d\theta}{d\tau})\frac{d\phi}{d\tau}.$$

Q.E.D.

Proposition 3
The acceleration vector at the spherical polar coordinate is
$$\frac{d^{2}\mathbf{r}}{d\tau^{2}} = \begin{pmatrix} \alpha_{r} \\ \alpha_{\theta} \\ \alpha_{\phi} \end{pmatrix} = \begin{pmatrix} \ddot{r} - r\dot{\theta}^{2} - r\dot{\phi}^{2}\sin^{2}\theta \\ 2\dot{r}\dot{\theta} + r\ddot{\theta} - r\dot{\phi}^{2}\sin\theta\cos\theta \\ 2\dot{r}\dot{\phi}\sin\theta + r\ddot{\phi}\sin\theta + 2r\dot{\phi}\dot{\theta}\cos\theta \end{pmatrix}.$$

 \mathbf{Proof}

We use the spherical polar coordinate (r, θ, ϕ) .

Let's $\theta = \theta(\tau)$ and $\phi = \phi(\tau)$ (the function of proper time τ) be two angles as a right figure.

Then the spherical polar coordinate (r, θ, ϕ) is

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}$$

And we can represent the position vector as follows;

$$\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r \end{pmatrix}.$$

s

And let's $\dot{\theta}(\tau) = \frac{d\theta}{d\tau}$ and $\dot{\phi}(\tau) = \frac{d\phi}{d\tau}$ be derivatives by the parameter τ (proper time).

Then we can represent the velocity vector as follows;

$$\dot{\mathbf{r}} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} -\sin\phi & -\cos\phi & 0 \\ \cos\phi & -\sin\phi & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r\phi \end{pmatrix}$$
$$+ \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\sin\theta & 0 & \cos\theta \\ 0 & 0 & 0 \\ -\cos\theta & 0 & -\sin\theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r\dot{\theta} \end{pmatrix}$$
$$+ \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \dot{r} \end{pmatrix}$$

$$= \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta\\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0\\ r\dot{\phi}\sin\theta\\ 0 \end{pmatrix} + \begin{pmatrix} r\dot{\theta}\\ 0\\ 0 \end{pmatrix} + \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix} + \begin{pmatrix} 0\\ 0\\ 0\\ \dot{r} \end{pmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta\\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} r\dot{\theta}\\ r\dot{\phi}\sin\theta\\ \dot{r} \end{pmatrix}.$$

For this calculation, we used the following relation;

$$\begin{pmatrix} -\sin\phi & -\cos\phi & 0\\ \cos\phi & -\sin\phi & 0\\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 & -\cos\theta & 0 \\ \cos\theta & 0 & \sin\theta \\ 0 & -\sin\theta & 0 \end{pmatrix}.$$

And

$$\begin{pmatrix} -\sin\theta & 0 & \cos\theta \\ 0 & 0 & 0 \\ -\cos\theta & 0 & -\sin\theta \end{pmatrix} = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

Therefore

$$\begin{pmatrix} v_{\theta} \\ v_{\phi} \\ v_{r} \end{pmatrix} = \begin{pmatrix} r\dot{\theta} \\ r\sin\theta\dot{\phi} \\ \dot{r} \end{pmatrix}$$

is a velocity vector at the spherical polar coordinate.

And let's $\ddot{\theta}(\tau) = \frac{d^2\theta}{d\tau^2}$ and $\ddot{\phi}(\tau) = \frac{d^2\phi}{d\tau^2}$ be double derivatives by the parameter τ (proper time)

 τ (proper time).

Then we can represent the acceleration vector as follows;

$$\ddot{\mathbf{r}} = \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{pmatrix} = \begin{pmatrix} -\sin\phi & -\cos\phi & 0 \\ \cos\phi & -\sin\phi & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} r\dot{\phi}\dot{\theta} \\ r\dot{\phi}^2\sin\theta \\ \dot{r}\dot{\phi} \end{pmatrix}$$

$$\begin{aligned} &+ \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\sin\theta & 0 & \cos\theta \\ 0 & 0 & 0\\ -\cos\theta & 0 & -\sin\theta \end{pmatrix} \begin{pmatrix} r\dot{\theta}^{2}\\ r\dot{\phi}\dot{\theta}\sin\theta \\ \dot{r}\dot{\theta} \end{pmatrix} \\ &+ \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} \dot{r}\dot{\theta} + r\ddot{\theta} \\ \dot{r}\dot{\phi}\sin\theta + r\ddot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta \\ \ddot{r} \end{pmatrix} \\ &= \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 & -\cos\theta & 0\\ \cos\theta & 0 & \sin\theta \\ 0 & -\sin\theta & 0 \end{pmatrix} \begin{pmatrix} r\dot{\phi}\dot{\theta} \\ \dot{r}\dot{\phi}^{2}\sin\theta \\ \dot{r}\dot{\phi} \end{pmatrix} \\ &+ \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} r\dot{\theta}^{2} \\ r\dot{\phi}\dot{\theta}\sin\theta \\ \dot{r}\dot{\theta} \end{pmatrix} \\ &+ \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} \dot{r}\dot{\theta} + r\ddot{\theta} \\ \dot{r}\dot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta \\ \ddot{r}\dot{\theta} \end{pmatrix} \\ &= \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} \dot{r}\dot{\theta} + r\ddot{\theta} \\ \dot{r}\dot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta \\ \ddot{r} \end{pmatrix} . \end{aligned}$$

Therefore

$$\begin{pmatrix} \alpha_{\theta} \\ \alpha_{\phi} \\ \alpha_{r} \end{pmatrix} = \begin{pmatrix} 2\dot{r}\dot{\theta} + r\ddot{\theta} - r\dot{\phi}^{2}\sin\theta\cos\theta \\ 2\dot{r}\dot{\phi}\sin\theta + r\ddot{\phi}\sin\theta + 2r\dot{\phi}\dot{\theta}\cos\theta \\ \ddot{r} - r\dot{\theta}^{2} - r\dot{\phi}^{2}\sin^{2}\theta \end{pmatrix}$$

is an acceleration vector at the spherical polar coordinate.

Q.E.D.

References

(1) Y. Takemoto, New Notation and Relativistic Form of the 4-dimensional Vector in Time-Space, Bull. of NBU Vol. 34, No. 1 (2006-Mar.) pp. 32-38.

(2) Y. Takemoto, A New Form of Equation of Motion for a Moving Charge and the Lagrangian,Bull. of NBU Vol. 35, No. 1 (2007-Mar.) pp. 1-9.