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運動する電荷の運動方程式(行列表記)とラグランジアン 

A New Form of Equation of Motion for a Moving Charge 

and 

the Lagrangian 

 

Ｙｏｓｈｉｏ ＴＡＫＥＭＯＴＯ 

 

D ｅｐａｒｔ mｅｎｔ ｏf Ｅｌｅｃｔｒｉｃａｌ Ｅｎｇｉｎｅｅｒｉｎｇ   ａｎd 

Ｅｌｅｃｔｒｏｎｉｃｓ，Sｃｈｏｏｌ ｏｆ Ｅｎｇｉｎｅｅｒｉｎｇ， 

 

Ｎｉｐｐｏｎ Ｂｕｎｒｉ Ｕｎｉｖｅｒｓｉｔｙ 

 

Ａｂｓｔｒａｃｔ 

 

In our previous paper， we presented a new notion，”matrix-vector”, which is a 

vector where the function of matrix product has been added [(8) Y. Takemoto,  Bull. 

of NBU Vol.34，No.1 (2006-Mar.) p.32]． 

In this paper， as an application of the matrix-vectors， we deduce an equation of 

motion represented by matrix for a moving charge in an electromagnetic field． 

 

Contents: 

In § 1，  using a traditional variational method，  we deduce (A)the usual 

4-dimensional momentum and (B)equation of motion from the Lagrangian． Now we rewrite 

its momentum and equation into the matrix-vector form． 

 

In §2， for preliminaries， we review (A)the matrix-vector and (B)its Lorentz form． 

Now we define the variation of the matrix-vector and investigate its meaning by 

comparing this variation with the usual one (，A )． 

 

In §3， we denote the Lagrangian by the matrix-vector form and use the variational 

method． Then we can get the equation of motion which is represented by matrix-vector 

form． 

New features of this equation are  
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(1) New effects of the time components 0E  of the electric field appear． 

(2) The 4-dimensional complex force appears． 

(3) The relativistic invariance of the equation is apparent． 

 

§1． Introduction 

We put the Lagrangians L  and 0L  which are for time dt  and for proper time 

2 2( ) ( )ds dct d  r  respectively，that is， 
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The actions of these Lagrangians are as follows: 

2

1

2
20

2
{ ( )} { 1 ( )}

b t

a t

uq v
S mc c ds mc q dt

c c c c
            

u
A A v ． 

Further we put the variations． 

d
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dct
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d
ct div
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A
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And we use the relation 
2 2 2

0u c u , then 

0 ( ) ( )ds u d ct d   u r ， 0 0( ) ( ) 0u u  u u ・・・・・・・(＊＊) ． 

We get (A)the usual generalized momentum and (B)equation of motion to the moving 

charge q  with  the mass m  in the electromagnetic field as follows: 

 (A) The generalized momentum is 
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The generalized energy is 
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And the relation between them is 
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2 2 2 2 2 2( ) ( ) ( ) ( )q c q c mc      P A p ． 

 

(B) The equation of motion is 

( )
d L L

dt

 


 v r
． 

The left side term is 

( ) ( ( ) )
d L d q

dt t dt c t

  
    

  

P p A
v grad A

v
． 

The right side term is 

( ) (( ) )
L

L q q q q 


        


grad grad A v grad v grad A v rotA grad
r

． 

Therefore we get the equation of motion of moving charge in the electromagnetic 

field． 

( )
d

q q
dt t




    


p A
grad v rotA， 

[ ]q q c iq c
c c

     
v v

E B B E ． 

where 
t




  


A
E grad ， B rotA． 

The underlined imaginary part is the term which we have added． 

 

Using 
2 2 2 2( ) ( )c mc  p  and 

2c




v
p , we get 

d d

dt dt


 

p
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c c

       
v v

v E B v B E ， 

q iq c   v E v B． 

We can rewrite these equations by using the matrix-vector as follows: 
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§2． Preliminaries and notations． 

In this section， we review (I)-(A)a matrix-vector and (B)its Lorentz form． Now 

we define (II)the variation of the matrix-vector． 

 

(I)-(A) A matrix-vector．6)8) 

We identify the 4-dimensional vector 
4

tt

x

y

z

AA

A

A
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A
 and the (1)u  matrix2)3) 

t x y z

y z t x

A A A iA

A iA A A

  
 

  
，  and we represent this matrix by a symbol 

( )

tt

x y z
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   A
 and call it a matrix-vector． 

And we complexify the each component tA ， xA ， yA ， zA ，that is， we define the symbol 

( )

tt

x y z

AA

A A A

  
   

   A
as the matrix 

t x y z

y z t x

A A A iA
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with complex 

components． 

Then the product(4-dimensional vector product) between two matrix-vector is as 

follows: 

( )

t tt t

t t
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A B
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． 

And we define 
tA 

 
 T

A
，
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A
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part and a conjugate4) of 
tA 

 
 A

 respectively． 

This conjugate corresponds to the cofactor matrix of matrix 
t x y z

y z t x

A A A iA

A iA A A

  
 

  
． 
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Therefore we get the relation: 

 
t t t tA B B A     

     
     A B B A
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(B) The Lorentz form．8) 

When a particle moves to the x -direction at the speed v， then we have the Lorentz 

transformation: 
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And we can rewrite this transformation by using the matrix: 
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Then we have a relativistic transformation in the matrix-vector form: 
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More generally， when a particle moves at a speed v with direction cosine ( , , )A B C ， 

then we have the Lorentz form 5) as follows: 
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(i)The transformation of coordinate matrix-vector1)5) and its abbreviation are 
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(ii)The transformation of derivative matrix-vector1)5) and its abbreviation are 
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(iii)The transformation of potential matrix-vector1) 5) and its abbreviation are 
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And we call them a Lorentz form． 

 

Using this Lorentz form and the relation (＊＊＊)， we get  
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(II) The variation of the matrix-vector． 

Using the relation (＊＊)， we get 
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And the variation of the potential matrix-vector1) is 
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Another representation of this variation is 
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where the underlined parts are the usual variation (＊)． 
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This variation is the extension of the usual variation． 

 

In this variation， some new features appear as follows:  

(Ⅰ) The variation of energy． 

(i) The terms 
0( )ct divc E ct

ct


 


 


A and ( )

c

ct
  


    



A
r grad E r  are the 

variation of energy of the charge． 

(ii) The term ( ) ( )i c i c i  
 

      
 

r A A r B r
r r

 is the variation of energy of the 

magnetic charge， because we put m  B r， then ( )mi i i c B grad rot A  is a 

force of the magnetic charge 

 

(Ⅱ) The variation of momentum． 

(i) The term ( )
c

ct ct
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A r
r grad rot A E B  is the variation 
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§３ The equation of motion(matrix)． 

We use the variational method， and can get the following theorem．  

Theorem (The equation of motion represented by the matrix-vector) 

We define the Lagrangian and its action in the matrix-vector form as follows: 
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Then we get the equation of motion represented by the matrix-vector 
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， 

where q  is the charge and m  is the mass． 
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mc
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Then we can put the Lagrangian and its action in the matrix-vector form as follows: 
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 This can be justified as 
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(i) ( )Energy L   P v ⇔
L c

c


 

   
                  T

0 v
p

， when charge 0q  ． 

(Lagrangian)=(Energy-Momentum)×(Velocity) 

(ii) 0
0(Lagrangian) ( )
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⇔
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Then the variation of the action I  is 
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Therefore， using the relations (＊)’，(＊＊)’ and integration by parts， we get 
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Using the relation (＊＊＊)’ and the condition of variation as 
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Lastly we get the following formula: 
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(i)Especially when  r 0， the variation  I  is always zero to any variation ct ． 

Therefore  
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Especially when 0ct  ， the variation  I  is always zero to any variation r． 

Therefore  
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By the formulas (A) and (B)， we get 
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Therefore we get the following equation of motion7): 
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This equation means that the 4-dimensional force is the 4-dimensional vector product 

between the electromagnetic field and the 4-dimensional velocity． 
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