A New Form of Equation of Motion for a Moving Charge

 and
the Lagrangian

Yoshio TAKEMOTO

 Electronics, Schoolof Engineering,

Nippon Bunrinniversity

Abstract

In our previous paper, we presented a new notion, " matrix-vector", which is a vector where the function of matrix product has been added [(8) Y. Takemoto, Bull. of NBU Vol. 34, No. 1 (2006-Mar.) p.32].

In this paper, as an application of the matrix-vectors, we deduce an equation of motion represented by matrix for a moving charge in an electromagnetic field.

Contents:

In § 1 , using a traditional variational method, we deduce (A) the usual 4-dimensional momentum and (B) equation of motion from the Lagrangian. Now we rewrite its momentum and equation into the matrix-vector form.

In §2, for preliminaries, we review (A) the matrix-vector and (B) its Lorentz form. Now we define the variation of the matrix-vector and investigate its meaning by comparing this variation with the usual one ($\delta \boldsymbol{\phi}, \delta \mathbf{A}$).

In $\S 3$, we denote the Lagrangian by the matrix-vector form and use the variational method. Then we can get the equation of motion which is represented by matrix-vector form.

New features of this equation are
(1) New effects of the time components E_{0} of the electric field appear.
(2) The 4-dimensional complex force appears.
(3) The relativistic invariance of the equation is apparent.

§ 1. Introduction

We put the Lagrangians L and L_{0} which are for time $d t$ and for proper time $d s=\sqrt{(d c t)^{2}-(d \mathbf{r})^{2}}$ respectively, that is,

$$
\begin{aligned}
& L=-m c^{2} \sqrt{1-\frac{\mathbf{v}^{2}}{c^{2}}}+q(\mathbf{A} \cdot \mathbf{v}-\phi) \\
& L_{0}=-m c+\frac{q}{c}\left(c \mathbf{A} \cdot \frac{\mathbf{u}}{c}-\phi \frac{u_{0}}{c}\right)
\end{aligned}
$$

where $\frac{u_{0}}{c}=\frac{d c t}{d s}=\frac{1}{\sqrt{1-\frac{\mathbf{v}^{2}}{c^{2}}}}=\gamma, \quad \frac{\mathbf{u}}{c}=\frac{d \mathbf{r}}{d s}=\frac{\frac{\mathbf{v}}{c}}{\sqrt{1-\frac{\mathbf{v}^{2}}{c^{2}}}}=\gamma \boldsymbol{\beta}$.
The actions of these Lagrangians are as follows:

$$
S=\int_{a}^{b}\left\{-m c+\frac{q}{c}\left(c \mathbf{A} \cdot \frac{\mathbf{u}}{c}-\phi \frac{u_{0}}{c}\right)\right\} d s=\int_{t_{1}}^{t_{2}}\left\{-m c^{2} \sqrt{1-\frac{v^{2}}{c^{2}}}+q(\mathbf{A} \cdot \mathbf{v}-\phi)\right\} d t
$$

Further we put the variations.

$$
\delta \phi=\frac{d \phi}{d c t} \delta c t+\operatorname{grad} \phi \cdot \delta \mathbf{r}, \quad \delta \mathbf{A}=\frac{d \mathbf{A}}{d c t} \delta c t+\operatorname{div} \mathbf{A} \delta \mathbf{r} \cdots \cdots \cdot(*)
$$

And we use the relation $u_{0}{ }^{2}-\mathbf{u}^{2}=c^{2}$, then

$$
\left.\delta d s=u_{0} d(\delta c t)-\mathbf{u} d(\delta \mathbf{r}), \quad \delta\left(u_{0}\right) u_{0}-\delta(\mathbf{u}) \mathbf{u}=0 \cdots \cdots *\right)
$$

We get (A) the usual generalized momentum and (B) equation of motion to the moving charge q with the mass m in the electromagnetic field as follows:
(A) The generalized momentum is

$$
\mathbf{P}=\frac{\partial L}{\partial \mathbf{v}}=\frac{m \mathbf{v}}{\sqrt{1-\frac{\mathbf{v}^{2}}{c^{2}}}}+q \mathbf{A}=\mathbf{p}+q \mathbf{A}
$$

The generalized energy is

$$
\mathrm{E}=\mathbf{P} \cdot \mathbf{v}-L=\frac{m c^{2}}{\sqrt{1-\frac{\mathbf{v}^{2}}{c^{2}}}}+q \phi=\varepsilon+q \phi
$$

And the relation between them is

$$
(\mathrm{E}-q \phi)^{2}-(\mathbf{P} c-q \mathbf{A})^{2}=\varepsilon^{2}-(\mathbf{p} c)^{2}=\left(m c^{2}\right)^{2} .
$$

(B) The equation of motion is

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \mathbf{v}}\right)=\frac{\partial L}{\partial \mathbf{r}}
$$

The left side term is

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \mathbf{v}}\right)=\frac{\partial \mathbf{P}}{\partial t}=\frac{d \mathbf{p}}{d t}+\frac{q}{c}\left(\frac{\partial \mathbf{A}}{\partial t}+(\mathbf{v} \cdot \operatorname{grad}) \mathbf{A}\right) .
$$

The right side term is

$$
\frac{\partial L}{\partial \mathbf{r}}=\operatorname{grad} L=q \operatorname{grad}(\mathbf{A} \cdot \mathbf{v})-q \operatorname{grad} \phi=q((\mathbf{v} \cdot \operatorname{grad}) \mathbf{A}+\mathbf{v} \times \mathbf{r o t} \mathbf{A})-q \operatorname{grad} \phi .
$$

Therefore we get the equation of motion of moving charge in the electromagnetic field.

$$
\begin{aligned}
\frac{d \mathbf{p}}{d t} & =-q\left(\frac{\partial \mathbf{A}}{\partial t}+\operatorname{grad} \phi\right)+q \mathbf{v} \times \mathbf{r o t} \mathbf{A}, \\
& =q \mathbf{E}+q \frac{\mathbf{v}}{c} \times c \mathbf{B}-i q\left[c \mathbf{B}-\frac{\mathbf{v}}{c} \times \mathbf{E}\right] .
\end{aligned}
$$

where $\mathbf{E}=-\frac{\partial \mathbf{A}}{\partial t}-\operatorname{grad} \phi, \quad \mathbf{B}=\operatorname{rot} \mathbf{A}$.
The underlined imaginary part is the term which we have added.

Using $\varepsilon^{2}-(\mathbf{p} c)^{2}=\left(m c^{2}\right)^{2}$ and $\mathbf{p}=\frac{\varepsilon \mathbf{v}}{c^{2}}$, we get

$$
\begin{aligned}
\frac{d \varepsilon}{d t} & =\mathbf{v} \cdot \frac{d \mathbf{p}}{d t} \\
& =\mathbf{v} \cdot\left(q \mathbf{E}+q \frac{\mathbf{v}}{c} \times c \mathbf{B}\right)-\mathbf{v} \cdot i q\left[c \mathbf{B}-\frac{\mathbf{v}}{c} \times \mathbf{E}\right], \\
& =q \mathbf{v} \cdot \mathbf{E}-i q \mathbf{v} \cdot c \mathbf{B} .
\end{aligned}
$$

We can rewrite these equations by using the matrix-vector as follows:

$$
\begin{aligned}
\frac{d}{d t}\left(\begin{array}{ll}
\frac{\varepsilon}{c} & \\
& \mathbf{p}
\end{array}\right) & =\left(\begin{array}{cc}
\frac{q}{c} \mathbf{v} \cdot \mathbf{E}-i \frac{q}{c} \mathbf{v} \cdot c \mathbf{B} \\
& \frac{l^{\prime}}{} \\
& q \mathbf{E}+q \frac{\mathbf{v}}{c} \times c \mathbf{B}-i q\left[c \mathbf{B}-\frac{\mathbf{v}}{c} \times \mathbf{E}\right]
\end{array}\right), \\
& =\frac{q}{c}\left(\begin{array}{ll}
0 & \\
& \mathbf{E}-i c \mathbf{B}
\end{array}\right)\left(\begin{array}{ll}
c & \\
& \mathbf{v}
\end{array}\right) .
\end{aligned}
$$

§2. Preliminaries and notations.

In this section, we review (I)-(A) a matrix-vector and (B)its Lorentz form. Now we define (II) the variation of the matrix-vector.
(I)-(A) A matrix-vector. ${ }^{\text {6) }}$)

We identify the 4 -dimensional vector $\binom{A_{t}}{\mathbf{A}}=\left(\begin{array}{c}A_{t} \\ A_{x} \\ A_{y} \\ A_{z}\end{array}\right) \in \mathbb{R}^{4}$ and the $u(1)$ - matrix ${ }^{2) 3)}$ $\left(\begin{array}{cc}A_{t}+A_{x} & A_{y}+i A_{z} \\ A_{y}-i A_{z} & A_{t}-A_{x}\end{array}\right) \quad, \quad$ and we represent this matrix by a symbol $\left(\begin{array}{ll}A_{t} & \\ & \mathbf{A}\end{array}\right)=\left(\begin{array}{llll}A_{t} & & & \\ & \left(\begin{array}{lll}A_{x} & A_{y} & A_{z}\end{array}\right)\end{array}\right)$ and call it a matrix-vector.

And we complexify the each component $A_{t}, A_{x}, A_{y}, A_{z}$, that is, we define the symbol
$\left(\begin{array}{ll}A_{t} & \\ & \mathbf{A}\end{array}\right)=\left(\begin{array}{lll}A_{t} & & \\ & \left(\begin{array}{lll}A_{x} & A_{y} & A_{z}\end{array}\right)\end{array}\right)$ as the matrix $\left(\begin{array}{ll}A_{t}+A_{x} & A_{y}+i A_{z} \\ A_{y}-i A_{z} & A_{t}-A_{x}\end{array}\right)$ with complex components.

Then the product(4-dimensional vector product) between two matrix-vector is as follows:

$$
\left(\begin{array}{ll}
A_{t} & \\
& \mathbf{A}
\end{array}\right)\left(\begin{array}{ll}
B_{t} & \\
& \mathbf{B}
\end{array}\right)=\left(\begin{array}{ll}
A_{t} B_{t}+\underline{\mathbf{A} \cdot \mathbf{B}} & \\
& A_{t} \mathbf{B}+\mathbf{A} B_{t}-i(\underline{\underline{\mathbf{A} \times \mathbf{B}}})
\end{array}\right) .
$$

And we define $\left(\begin{array}{ll}A_{t} & \\ & \mathbf{A}\end{array}\right)_{\mathbf{T}},\left(\begin{array}{ll}A_{t} & \\ & \mathbf{A}\end{array}\right)_{\mathbf{S}}$ and $\left(\begin{array}{ll}A_{t} & \\ & \mathbf{A}\end{array}\right)$ are each the time part, space part and a conjugate ${ }^{4)}$ of $\left(\begin{array}{ll}A_{t} & \\ & \mathbf{A}\end{array}\right)$ respectively.

This conjugate corresponds to the cofactor matrix of matrix $\left(\begin{array}{cc}A_{t}+A_{x} & A_{y}+i A_{z} \\ A_{y}-i A_{z} & A_{t}-A_{x}\end{array}\right)$.

Therefore we get the relation:

$$
\begin{aligned}
& \left(\begin{array}{ll}
A_{t} & \\
& \mathbf{A}
\end{array}\right)\left(\begin{array}{ll}
B_{t} & \\
& \mathbf{B}
\end{array}\right)=\left(\begin{array}{ll}
B_{t} & \\
& \mathbf{B}
\end{array}\right)\left(\begin{array}{ll}
A_{t} & \\
& \mathbf{A}
\end{array}\right), \text { and } \\
& {\left[\left(\begin{array}{ll}
A_{t} & \\
& \mathbf{A}
\end{array}\right)\left(\begin{array}{ll}
B_{t} & \\
& \mathbf{B}
\end{array}\right)\right]_{\mathbf{T}}=\left[\left(\begin{array}{ll}
B_{t} & \\
& \mathbf{B}
\end{array}\right)\left(\begin{array}{ll}
A_{t} & \\
& \mathbf{A}
\end{array}\right)\right]_{\mathbf{T}} \cdot \cdots \cdot(* * *) .}
\end{aligned}
$$

(B) The Lorentz form. ${ }^{8)}$

When a particle moves to the x-direction at the speed v, then we have the Lorentz transformation:

$$
\left\{\begin{array}{l}
c t^{\prime}=\gamma(c t-\beta x) \\
x^{\prime}=\gamma(x-\beta c t) \\
y^{\prime}=y \\
z^{\prime}=z
\end{array}\right.
$$

where $\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\cosh \Theta$ and $\gamma \beta=\frac{\frac{v}{c}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\sinh \Theta$.
And we can rewrite this transformation by using the matrix:

$$
\begin{aligned}
\left(\begin{array}{cc}
c t^{\prime}+x^{\prime} & y^{\prime}+i z^{\prime} \\
y^{\prime}-i z^{\prime} & c t^{\prime}-x^{\prime}
\end{array}\right) & =\left(\begin{array}{cc}
\gamma(1-\beta)(c t+x) & y+i z \\
y-i z & \gamma(1+\beta)(c t-x)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\gamma_{+}-\gamma_{-} & 0 \\
0 & \gamma_{+}+\gamma_{-}
\end{array}\right)\left(\begin{array}{cc}
c t+x & y+i z \\
y-i z & c t-x
\end{array}\right)\left(\begin{array}{cc}
\gamma_{+}-\gamma_{-} & 0 \\
0 & \gamma_{+}+\gamma_{-}
\end{array}\right)
\end{aligned}
$$

where $\gamma_{+}=\sqrt{\frac{\gamma+1}{2}}=\cosh \frac{\Theta}{2}$ and $\gamma_{-}=\sqrt{\frac{\gamma-1}{2}}=\sinh \frac{\Theta}{2}$.
Then we have a relativistic transformation in the matrix-vector form:

$$
\left(\begin{array}{ll}
c t^{\prime} & \\
& \mathbf{r}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
\gamma_{+} & \\
& -\boldsymbol{\gamma}_{0}
\end{array}\right)\left(\begin{array}{ll}
c t & \\
& \mathbf{r}
\end{array}\right)\left(\begin{array}{ll}
\gamma_{+} & \\
& -\boldsymbol{\gamma}_{0}
\end{array}\right), \quad \boldsymbol{\gamma}_{0}=\gamma_{-}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

More generally, when a particle moves at a speed v with direction cosine (A, B, C), then we have the Lorentz form ${ }^{5)}$ as follows:
(i) The transformation of coordinate matrix-vector ${ }^{15)}$ and its abbreviation are

$$
\left(\begin{array}{ll}
c t^{\prime} & \\
& -\mathbf{r}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
\gamma_{+} & \\
& \underline{\boldsymbol{\gamma}_{0}}
\end{array}\right)\left(\begin{array}{ll}
c t & \\
& -\mathbf{r}
\end{array}\right)\left(\begin{array}{ll}
\gamma_{+} & \\
& \underline{\boldsymbol{\gamma}_{0}}
\end{array}\right)=\left(\begin{array}{ll}
c t & \\
& -\mathbf{r}
\end{array}\right)^{+}, \quad \boldsymbol{\gamma}_{0}=\gamma_{-}\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right) .
$$

(ii) The transformation of derivative matrix-vector ${ }^{1 / 5)}$ and its abbreviation are

$$
\left(\begin{array}{cc}
\frac{\partial}{\partial c t^{\prime}} & \\
& -\frac{\partial}{\partial \mathbf{r}^{\prime}}
\end{array}\right)=\left(\begin{array}{ll}
\gamma_{+} & \\
& -\underline{\gamma_{0}}
\end{array}\right)\left(\begin{array}{ll}
\frac{\partial}{\partial c t} & \\
& -\frac{\partial}{\partial \mathbf{r}}
\end{array}\right)\left(\begin{array}{ll}
\gamma_{+} & \\
& -\boldsymbol{\gamma}_{0}
\end{array}\right)=\left(\begin{array}{ll}
\frac{\partial}{\partial c t} & \\
& -\frac{\partial}{\partial \mathbf{r}}
\end{array}\right)^{-}
$$

(iii) The transformation of potential matrix-vector ${ }^{1)}{ }^{5)}$ and its abbreviation are

$$
\left(\begin{array}{ll}
\phi^{\prime} & \\
& -c \mathbf{A}^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
\gamma_{+} & \\
& \underline{\boldsymbol{\gamma}_{0}}
\end{array}\right)\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)\left(\begin{array}{ll}
\gamma_{+} & \\
& \underline{\boldsymbol{\gamma}_{0}}
\end{array}\right)={ }^{+}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}
$$

And we call them a Lorentz form.

Using this Lorentz form and the relation ($* * *$), we get
and

$$
\left.\left[\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+-}\left(\begin{array}{ll}
\delta c t & \\
& \delta \mathbf{r}
\end{array}\right)^{-}\right]_{\mathbf{T}}=\left[\begin{array}{cc}
\delta c t & \\
& -\delta \mathbf{r}
\end{array}\right)^{+-}\left(\begin{array}{ll}
\phi & \\
& c \mathbf{A}
\end{array}\right)^{-}\right]_{\mathbf{T}} \cdots(* * *)
$$

(II) The variation of the matrix-vector.

Using the relation $(* *)$, we get

$$
\left.\delta\left[\begin{array}{cc}
\frac{u_{0}}{c} & \\
& -\frac{\mathbf{u}}{c}
\end{array}\right)^{+-}\left(\begin{array}{cc}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-}\right]_{\mathbf{T}}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ll}
\delta\left(\frac{u_{0}}{c}\right) \frac{u_{0}}{c}-\delta\left(\frac{\mathbf{u}}{c}\right) \frac{\mathbf{u}}{c} \\
= & \left.\delta\left(\frac{u_{0}}{c}\right) \frac{\mathbf{u}}{c}-\delta\left(\frac{\mathbf{u}}{c}\right) \frac{u_{0}}{c}+i \delta\left(\frac{\mathbf{u}}{c}\right) \times \frac{\mathbf{u}}{c}\right)_{\mathrm{T}}
\end{array}\right. \\
& =\left(\begin{array}{ll}
0 & \\
& \mathbf{0}
\end{array}\right) \cdots(* *)^{\prime},
\end{aligned}
$$

And the variation of the potential matrix-vector ${ }^{1)}$ is

$$
\begin{aligned}
\delta\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+} & =\left(\begin{array}{ll}
\delta c t & \\
& -\delta \mathbf{r}
\end{array}\right)^{+}\left[\begin{array}{ll}
\left.--\left(\begin{array}{ll}
\frac{\partial}{\partial c t} & \\
& -\frac{\partial}{\partial \mathbf{r}}
\end{array}\right)^{+}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}\right], \\
& =\left(\begin{array}{ll}
\delta c t & \\
& -\delta \mathbf{r}
\end{array}\right)^{+-}\left(\begin{array}{ll}
E_{0} & \\
& \mathbf{E}-i c \mathbf{B}
\end{array}\right)^{+} \cdots(*)^{\prime} .
\end{array} . . . \begin{array}{ll}
&
\end{array} .\right.
\end{aligned}
$$

Another representation of this variation is

$$
\begin{aligned}
& \delta^{+}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}=\left[\left(\begin{array}{ll}
\delta c t & \\
& -\delta \mathbf{r}
\end{array}\right)^{+}\left(\begin{array}{ll}
\frac{\partial}{\partial c t} & \\
& -\frac{\partial}{\partial \mathbf{r}}
\end{array}\right)^{-}\right]+\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}, \\
& =\left(\begin{array}{ll}
\delta c t \frac{\partial}{\partial c t}+\delta \mathbf{r} \cdot \frac{\partial}{\partial \mathbf{r}} & \\
& -\delta c t \frac{\partial}{\partial \mathbf{r}}-\delta \mathbf{r} \frac{\partial}{\partial c t}-i \delta \mathbf{r} \times \frac{\partial}{\partial \mathbf{r}}
\end{array}\right)^{+}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}, \\
& \int^{+}\left(\frac{\left(\delta c t \frac{\partial \phi}{\partial c t}+\delta \mathbf{r} \cdot \operatorname{grad} \phi\right)}{+\left(\delta c t d i v c \mathbf{A}+\delta \mathbf{r} \cdot \frac{\partial c \mathbf{A}}{\partial c t}\right)}\right. \\
& =+i\left(\delta \mathbf{r} \times \frac{\partial}{\partial \mathbf{r}}\right) \cdot \mathbf{A} \\
& -\left(\delta c t \frac{\partial c \mathbf{A}}{\partial c t}+\left(\delta \mathbf{r} \cdot \frac{\partial}{\partial \mathbf{r}}\right) c \mathbf{A}\right) \\
& -\left\{\delta c t \operatorname{grad} \phi+\delta \mathbf{r} \frac{\partial \phi}{\partial c t}+i \delta \mathbf{r} \times \operatorname{grad} \phi\right\} \\
& -i\left\{\delta c t \mathbf{r o t} c \mathbf{A}+\delta \mathbf{r} \times \frac{\partial c \mathbf{A}}{\partial c t}+i\left(\delta \mathbf{r} \times \frac{\partial}{\partial \mathbf{r}}\right) \times c \mathbf{A}\right\}
\end{aligned}
$$

where the underlined parts are the usual variation (*).

This variation is the extension of the usual variation.

In this variation, some new features appear as follows:
(I) The variation of energy.
(i) The terms $\delta c t\left(\frac{\partial \phi}{\partial c t}+\operatorname{divc\mathbf {A}}\right)=E_{0} \delta c t$ and $\delta \mathbf{r} \cdot\left(\operatorname{grad} \phi+\frac{\partial c \mathbf{A}}{\partial c t}\right)=-\mathbf{E} \cdot \delta \mathbf{r}$ are the variation of energy of the charge.
(ii) The term $i\left(\delta \mathbf{r} \times \frac{\partial}{\partial \mathbf{r}}\right) \cdot c \mathbf{A}=i\left(\frac{\partial}{\partial \mathbf{r}} \times c \mathbf{A}\right) \cdot \delta \mathbf{r}=i \mathbf{B} \cdot \delta \mathbf{r}$ is the variation of energy of the magnetic charge, because we put $\phi_{m}=\int \mathbf{B} \cdot \delta \mathbf{r}, \quad$ then $i \mathbf{B}=\operatorname{grad} i \phi_{m}(=i \boldsymbol{r o t} c \mathbf{A})$ is a force of the magnetic charge
(II) The variation of momentum.
(i) The term $\delta c t\left(\operatorname{grad} \phi+\frac{\partial c \mathbf{A}}{\partial c t}\right)=\mathbf{E} \delta c t$ and the term

$$
\begin{aligned}
& \delta \mathbf{r} \frac{\partial \phi}{\partial c t}+\left(\delta \mathbf{r} \cdot \frac{\partial}{\partial \mathbf{r}}\right) \mathbf{A}-\left(\delta \mathbf{r} \times \frac{\partial}{\partial \mathbf{r}}\right) \times c \mathbf{A} \\
= & \delta \mathbf{r}\left(\frac{\partial \phi}{\partial c t}+\operatorname{divc\mathbf {A}}\right)-\delta \mathbf{r} \times(\mathbf{r o t} c \mathbf{A}) \\
= & E_{0} \delta c t \frac{d \mathbf{r}}{d c t}+\mathbf{B} \times \frac{d \mathbf{r}}{d c t} \delta c t
\end{aligned}
$$

are both the variation of momentum of the charge.
(ii) The term $-i\left\{\delta \mathbf{r} \times\left(\boldsymbol{\operatorname { g r a d }} \phi+\frac{\partial c \mathbf{A}}{\partial c t}\right)+\delta c t \operatorname{rot} c \mathbf{A}\right\}=i\left(\mathbf{E} \times \frac{d \mathbf{r}}{d c t}-\mathbf{B}\right) \delta c t$ is the variation of momentum to the magnetic charge, because $i \mathbf{E} \times \frac{d \mathbf{r}}{d c t}$ is a force of the moving magnetic charge.

§ 3 The equation of motion(matrix).

We use the variational method, and can get the following theorem.
Theorem (The equation of motion represented by the matrix-vector)
We define the Lagrangian and its action in the matrix-vector form as follows:

$$
\begin{aligned}
& \mathbf{L}_{0}=\left\{m c{ }^{+}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \left.-\frac{\mathbf{u}}{c}\right)^{+}
\end{array}\right)^{+\frac{q}{c}}{ }^{+}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}\right\}^{-}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-},
\end{aligned}
$$

Then we get the equation of motion represented by the matrix-vector
$\frac{d}{d s}\left[\left(\begin{array}{ll}\frac{\varepsilon}{c} & \\ & \mathbf{p}\end{array}\right)+\frac{q}{c}\left(\begin{array}{ll}\phi & \\ & c \mathbf{A}\end{array}\right)\right]^{-}=\frac{q^{-}}{c}\left(\begin{array}{ll}E_{0} & \\ & \mathbf{E}-i c \mathbf{B}\end{array}\right)^{+}\left(\begin{array}{ll}\frac{u_{0}}{c} & \\ & \frac{\mathbf{u}}{c}\end{array}\right)^{-}$,
where q is the charge and m is the mass.

We define

$$
\mathbf{P}=\left(\begin{array}{ll}
\frac{\varepsilon}{c} & \\
& -\mathbf{p}
\end{array}\right)^{+}=m{ }^{+}\left(\begin{array}{ll}
u_{0} & \\
& -\mathbf{u}
\end{array}\right)^{+}, \quad \tilde{\mathbf{A}}={ }^{+}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+} \text {and } \mathbf{U}=\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-}
$$

Then we can put the Lagrangian and its action in the matrix-vector form as follows:

$$
\begin{aligned}
& \mathbf{L}_{0}=\left\{m c\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& -\frac{\mathbf{u}}{c}
\end{array}\right)^{+}+\frac{q}{c}^{+}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}\right\}^{-}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-} \\
& \mathbf{I}=\int_{s_{0}}^{s_{1}}\left(\left\{m c\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& -\frac{\mathbf{u}}{c}
\end{array}\right)^{+}+\frac{q^{+}}{c}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}\right\}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-}\right)_{\mathbf{T}} d s
\end{aligned}
$$

This can be justified as
(i) $\varepsilon($ Energy $)=\mathbf{P} \cdot \mathbf{v}-L \Leftrightarrow\left(\begin{array}{ll}L & \\ & \mathbf{0}\end{array}\right)=-\left\{\left(\begin{array}{ll}\frac{\varepsilon}{c} & \\ & \\ & -\mathbf{p}\end{array}\right)^{+}-\left(\begin{array}{ll}c & \\ & \mathbf{v}\end{array}\right)^{-}\right\}_{\mathbf{T}}$, when charge $q=0$.

$$
(\text { Lagrangian })=(\text { Energy }- \text { Momentum }) \times(\text { Velocity })
$$

(ii) $L_{0}($ Lagrangian $)=-m c+\frac{q}{c}\left(c \mathbf{A} \cdot \frac{\mathbf{u}}{c}-\phi \frac{u_{0}}{c}\right)$

$$
\begin{aligned}
\Leftrightarrow & \left(\begin{array}{ll}
L_{0} & \\
& \mathbf{0}
\end{array}\right)=- \\
& \left(\left\{\left[\begin{array}{ll}
\left.\left.+\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& -\frac{\mathbf{u}}{c}
\end{array}\right)^{+}+\frac{q}{c}^{+}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}\right\}^{-}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right]_{\mathbf{T}}^{-}\right] \\
& \\
&
\end{array}\right.\right.\right. \\
&
\end{aligned}
$$

Then the variation of the action \mathbf{I} is

$$
\begin{aligned}
& \delta \mathbf{I}=-\delta \int_{s_{0}}^{s_{1}}\left(\left[m c\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& -\frac{\mathbf{u}}{c}
\end{array}\right)+\frac{q}{c}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)\right]^{+-}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-}\right)_{\mathbf{T}} d s, \\
& =-\int_{s_{0}}^{s_{1}}\left(m c \delta\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \left.-\frac{\mathbf{u}}{c}\right)^{+-}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-} d s
\end{array}\right)_{\mathbf{T}}\right. \\
& -\int_{s_{0}}^{s_{1}}\left(\frac{q}{c} \delta^{+}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-}\right)_{\mathbf{T}} \\
& -\int_{s_{0}}^{s_{1}}\left[\left\{\left[{ }^{+}\left[\left[\begin{array}{ll}
\frac{u_{0}}{c} & \\
& -\frac{\mathbf{u}}{c}
\end{array}\right)+\frac{q}{c}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)\right]^{+}\right\} \delta\left\{\begin{array}{ll}
-\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-} \\
& \\
&
\end{array}\right]\right]_{\mathbf{T}} .\right.
\end{aligned}
$$

Therefore, using the relations $(*)^{\prime},(* *)^{\prime}$ and integration by parts, we get

$$
\begin{aligned}
\delta \mathbf{I}=-\int_{s_{0}}^{s_{1}} & {\left[\frac{q}{c}\left\{\begin{array}{ll}
+ \\
& -\delta \mathbf{r}
\end{array}\right)^{+-}\left(\begin{array}{ll}
E_{0} & \\
& \mathbf{E}-i c t \mathbf{B}
\end{array}\right)^{+}\right\}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \left.\left.\frac{\mathbf{u}}{c}\right)^{-}\right]_{\mathbf{T}} \\
& \left.+\int_{s_{0}}^{s_{1}}\left[\frac{d}{d s}\left\{\begin{array}{ll}
\frac{+}{c} & \\
& -\mathbf{p}
\end{array}\right)^{+}+\frac{q^{+}}{c}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}\right\}\left(\begin{array}{ll}
\delta c t & \\
& \delta \mathbf{r}
\end{array}\right)^{-}\right]_{\mathbf{T}} \\
& \left.-\left[\left\{\left[\begin{array}{ll}
\frac{\varepsilon}{c} & \\
& -\mathbf{p}
\end{array}\right)^{+}+\frac{q^{+}}{c}\left(\begin{array}{ll}
\phi & \\
& -c \mathbf{A}
\end{array}\right)^{+}\right\}\left(\begin{array}{ll}
\delta c t & \\
& \delta \mathbf{r}
\end{array}\right)^{-}\right]_{\mathbf{T}}\right]_{s_{0}}^{s_{1}}
\end{array}\right.}
\end{aligned}
$$

Using the relation $(* * *)$, and the condition of variation as

$$
\left(\begin{array}{ll}
\delta c t & \\
& \delta \mathbf{r}
\end{array}\right)\left(s_{0}\right)=\left(\begin{array}{ll}
\delta c t & \\
& \delta \mathbf{r}
\end{array}\right)\left(s_{1}\right)=\left(\begin{array}{ll}
0 & \\
& \mathbf{0}
\end{array}\right)
$$

Lastly we get the following formula:

$$
\delta \mathbf{I}=\int_{s_{0}}^{s_{1}}\left[\left(\begin{array}{ll}
\delta c t & \\
& -\delta \mathbf{r}
\end{array}\right)^{+}\left(\frac{d}{d s}\left\{\left(\begin{array}{ll}
\frac{\varepsilon}{c} & \\
& \mathbf{p}
\end{array}\right)^{-}+\frac{q^{-}}{c}\left(\begin{array}{ll}
\phi & \\
& c \mathbf{A}
\end{array}\right)^{-}\right\}-\frac{q^{-}}{c}\left(\begin{array}{ll}
E_{0} & \\
& \mathbf{E}-i c \mathbf{B}
\end{array}\right)^{+}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-}\right)\right]_{\mathbf{T}} d s .
$$

And this variation $\delta \mathbf{I}$ is always zero to any variation $\left(\begin{array}{ll}\delta c t & \\ & -\delta \mathbf{r}\end{array}\right)$.
(i) Especially when $\delta \mathbf{r}=\mathbf{0}$, the variation $\delta \mathbf{I}$ is always zero to any variation $\delta c t$. Therefore

$$
\left[\frac{d}{d s}\left\{\left(\begin{array}{ll}
\frac{\varepsilon}{c} & \\
& \mathbf{p}
\end{array}\right)^{-}+\frac{q^{-}}{c}\left(\begin{array}{ll}
\phi & \\
& c \mathbf{A}
\end{array}\right)^{-}\right\}-\frac{q^{-}}{c}\left(\begin{array}{ll}
E_{0} & \\
& \mathbf{E}-i c \mathbf{B}
\end{array}\right)^{+}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-}\right]_{\mathrm{T}}=\left(\begin{array}{ll}
0 & \\
& \mathbf{0}
\end{array}\right) \cdots(\mathrm{A}) .
$$

Especially when $\delta c t=0$, the variation $\delta \mathbf{I}$ is always zero to any variation $\delta \mathbf{r}$. Therefore

$$
\left[\frac{d}{d s}\left\{\left(\begin{array}{ll}
\frac{\varepsilon}{c} & \\
& \mathbf{p}
\end{array}\right)^{-}+\frac{q^{-}}{c}\left(\begin{array}{ll}
\phi & \\
& c \mathbf{A}
\end{array}\right)^{-}\right\}-\frac{q^{-}}{c}\left(\begin{array}{ll}
E_{0} & \\
& \mathbf{E}-i c \mathbf{B}
\end{array}\right)^{+}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-}\right]_{\mathrm{s}}=\left(\begin{array}{ll}
0 & \\
& \mathbf{0}
\end{array}\right) \cdots(\mathrm{B})
$$

By the formulas (A) and (B), we get

$$
\frac{d}{d s}\left\{\left(\begin{array}{ll}
\frac{\varepsilon}{c} & \\
& \mathbf{p}
\end{array}\right)^{-}+\frac{q^{-}}{c}\left(\begin{array}{ll}
\phi & \\
& c \mathbf{A}
\end{array}\right)^{-}\right\}-\frac{q^{-}}{c}\left(\begin{array}{cc}
E_{0} & \\
& \mathbf{E}-i c \mathbf{B}
\end{array}\right)^{-}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \frac{\mathbf{u}}{c}
\end{array}\right)^{-}=\left(\begin{array}{ll}
0 & \\
& \mathbf{0}
\end{array}\right)
$$

Therefore we get the following equation of motion ${ }^{7)}$:

$$
\frac{d}{d s}\left\{\left(\begin{array}{ll}
\frac{\varepsilon}{c} & \\
& \mathbf{p}
\end{array}\right)^{-}+\frac{q}{c}^{-}\left(\begin{array}{ll}
\phi & \\
& c \mathbf{A}
\end{array}\right)^{-}\right\}=\frac{q^{-}}{c}\left(\begin{array}{ll}
E_{0} & \\
& \mathbf{E}-i c \mathbf{B}
\end{array}\right)^{+}\left(\begin{array}{ll}
\frac{u_{0}}{c} & \\
& \underline{\mathbf{u}} \\
&
\end{array}\right)^{-}
$$

This equation means that the 4-dimensional force is the 4-dimensional vector product between the electromagnetic field and the 4-dimensional velocity.
(1) Y. Takemoto, An extension of Maxwell' s equations and the deduction from a Yang-Mills functional, Bull. of NBU Vol. 19, No. 2 (1991-0ct.) pp. 173-186.
(2) Y. Takemoto, "Pseudo"-Fiber Bundle and Connection on it, Bull. of NBU Vol. 20, No. 1 (1992-Feb.) pp. 132-148.
(3) Y. Takemoto, The Transformation Group on an Extended Hopf Fiber Bundle and Its Associated Bundle, Bull. of NBU Vol.20, No. 2 (1992-0ct.) pp. 86-99.
(4) Y. Takemoto, A Gauge Theory on the Anti-de Sitter Space, Bu11. of NBU Vol. 21, No. 1 (1993-Feb.) pp. 99-115.
(5) Y. Takemoto, A 4-dimensional Force and Electromagnetism, Bull. of NBU Vol. 21, No. 2 (1993-0ct.) pp. 57-68.
(6) Y. Takemoto, Vector Analysis on Time-Space, Bull. of NBU Vol. 24, No. 1 (1996-Feb.) pp. 75-89.
(7) Y. Takemoto, Gravitational Force and the 4-dimensional Complex Force, Bull. of NBU Vol.25, No. 1 (1997-Mar.) pp. 251-258.
(8) Y. Takemoto, New Notation and Relativistic Form of the 4-dimensional Vector in Time-Space, Bull. of NBU Vol. 34, No. 1 (2006-Mar.) pp. 32-38.

