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Abstract

In this paper, we discuss the new notation and the relativistic form of the

4-dimensional vector and their usefulness

Contents:

In §1 we define the matrix-vector and the relativistic form and we show their
examples.

We use the u(l) —matrix form as an expression of the 4-dimensional vectors and adopt
two notation.

The one is the matrix-vector which has simplicity of vector and function of matrix
and we get the calculation which contained all products (to multiple scalar or vector
by number, scalar product and vector product) in a 3-dimensional space.

The other one is a relativistic form” which is the simple expression of relativity

and we can get a useful and good guide by it

In §2 we exemplify the modification of Maxwell’s equations simply.
We introduce the time component of electric field and modify Maxwell’s equations from
the point of view that the vector and scalar potential satisfy the wave equations, "
and we rewrite these equations of Maxwell’s with the use of the matrix-vector and

relativistic form for the following discussion



In §3 we exemplify the 4-dimensional Lorentz force with complex component.
The usual Lorentz force is the 3—dimensional force which acts on the moving charge.
We rewrite this Lorentz force with the use of the matrix—vector and relativistic form,

and then we can get the 4-dimensional complex force which acts on the moving charge.

§1. Introduction

In the previous paper, we considered the 3—dimensional electric and magnetic field
as a complex 3—dimensional field E=E—icB and we add the time component E, in this
field.

As a result, it becomes a 4-dimensional complex vector field and we can modify

Maxwell’s equations with the use of the u(l)-matrix like this;
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And we can reform this matrix equation by the matrix—vector and the relativistic form;
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and then it gives us a good view and guide.

(1) Definition of the matrix—vector and its calculation.
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X
We identify the 4-dimensional vector eR* and the U(l)—matrix

y
z

[ct+x y+iz

. ] u(1)={xeM(2,<C)/x*:x}.
y—iz ct—x
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ct
And we adopt a new notation [ j (r=|y|eR?®) as this U()—matrix and we call
r
z

its vector (which is represented by matrix) the matrix—vector, and this notation

has simplicity of vector and function of matrix.

We have a simple rule for calculation in the matrix—vector.
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The underlined sign means scalar product and “X” vector product

The reason for the statement above is that the equation
ct+x y+iz\(ct'+x" y'+iz'
y—iz ct—x){y—=iz' ct'=x'

(ctet'+ xx'+ yy'+ zz") +[(ctx '+ xct ) —i(yz — zy )] [(cty'+ yet") —i(zx'= xz)]+i[(ctz'+ zct) —i(xy'— yx "]

- [(cty'+ yct") —i(zx'=xz )] —i[(ctz'+ zct ") —i(xy - yx )] (ctet'+xx'+ yy'+zz") —[(ctx'+ xct") —i(yz'- zy )]

holds.

(2) Translation by relativity.

When a particle move to the X-direction at the speed V,, then we have the relativity

relation.
Vi
We put y:;:coshe) and yP, = ——S—==sinh O
1- ()’ 1- ()’
c c
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And we can rewrite this relation with matrix form.
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Then we have a relation of matrix—vector.
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More generally, when a particle moves at the speed v with direction cosine (A, B,C),

then we have the relativity relation.?
ct'=yct—yfBAX—yfBBy —yfCz
X'=—yBAct +{l+ (y —1) A }x+ (y —=1) ABy + (y —1)CAz
y'=—yBBct + (y —1) ABx+{L+ (¥ —1)B*}y + (y —1)BCz
7'=—yfCct+(y —1) ACx+ (y —1)BCy +{1+ (» —-1)C*}z

And we can rewrite this relation with matrix form.
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Then we have a representation of matrix—vector.
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We adopt this translated matrix—vector as ( 'J = [ J after the underlined
r r

vector —7Y, above.

And we do by the same way. Then
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We adopt this translated matrix—vector as or = 5 after the
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underlined vector +Yy, above.
And so on ---.

(3) Another example for the matrix—vector.

E andE, (new term) are electric field(3-dimensional vector) and
time—component (scalar),

Bis a magnetic field(3-dimensional vector).

A and @ are a vector potential (3— dimensional vector) and a scalar potential.

5r=ii+ij+gk and (3C'[=i are differential operators.
ox oy oz oct

Then we have a representation of a matrix-vector.
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We compare the components of this relation, then.

E = 9 + diVCAses(1)
oct
E= _JA_ gradgse«(2)
oct

CB =rotcA«««(3)

The formulas (2) and (3) are the orthodox equations of Maxwell’ s.

The formula (1) is a time—component of electric field, we have a Lorenz gauge

0 .

E, :—¢+d|ch:O
oct

and a Coulomb gauge

0 .

E = —¢(<:> divcA =0)
oct

In this situation, when the function y and vector function % satisfy the wave
equation, the electric and magnetic fields (E, E, and B) are invariant by the

transformations,

oy
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P'=¢ ot divey
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And then the matrix form is
+ ¢, + ) + ¢ + . + act + - P +
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§ 2. The modified Maxwell’s equations as an example for a matrix—vector

We have orthodox equations of Maxwell’s in a vacuum.



rotE + % =0 (Faraday's law of induction)ess(4)
diveB=0 (No existence of magnetic charges)ees(5)
dive=2 (Gauss' law)es«(6)
&
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oct g,

We assume that when p=0 and j=0, the scalar potential ¢ and the vector
potential A satisfy the wave equation, respectively.

Then
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Therefore we get the modified Maxwell’s equations

Theorem 1. (The modified Maxwell’s equations)”
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And a representation of a matrix—vector is
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We can realize that the electromagnetic field is complex 4-dimensional space (E, —iCB,

and E—icB, B, =0) in this situation.

§3. The 4-dimensional Lorentz force as a complex one.
f is a 3-dimensional force,

J and Q are current and charge.

Then we have an orthodox Lorentz force.

f=qE+jxB

Theorem 2. (The modified Lorentz force)?”

The 4-dimensional force (Minkowski’s force) on a charge 0, which moves at speed

V in the field (E,E,B) is as follows:




The charge and the current are =0,y and J-::qoyﬁ respectively and
c

fi=0E + % -E (the variation of energy)
f=qE+ J E + IveB (the variation of momentum)
[

The underlined parts are new terms.

This 4-dimensional force is a real part of a following complex one (F,F).”

That is

) R ) _47 E, e .
F| E—icB J
C

And we compare the components of this relation, then

F :th+l~E—il-cB
C C

F:qE+lEt +dxcB-i(qeB-LxE)
c c ¢

The underlined parts are imaginary ones

More generally, let’s assume (ut,u)is the 4-dimensional velocity.

That is

dct dr
U = _

=—=Cy,U=—=¢C
T Y 47 7B

Then g =yq, :&ut\ l:}/[3qo Z%u and we have following relation.
C C C
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c
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In this equation, we have two important subjects
The one is the underlined part, momentum—energy matrix which does not appear in the

usual equation. We deduce this equation from Lagrangian (matrix) by use of the



variational method.
The other one is the complex force which is litter in the usual equation. We discuss
this imaginary part (force) in the case of the gravitational force and advance its

understanding in another paper
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