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Abstract
In this paper, we discuss the application of the 4-dimensional complex force as a gauge
field
Contents:
In §1,

we review a Kepler's law and gravitational force which is deduced by it.

In §2, we study the connection in the 4-dimensional complex force as a similar to an electro-
magnetic force and differential equation.
And in §3,

we study property of the solution of the differential equation.

§1. the law of universal gravitation

Ini this section, we mention the Kepler's laws and the gravitational force law which is deduced from them.
ecach other

[Kepler's laws]
1) (first law)

The planets all travel around the sun in elliptical orbits having the sun at one forcus. I
Implicit in this law is the fact that the paths of the planets lie in planes containing the sun.
i) {second law)

The radius vector from the sun to any planet sweeps out equal areas in equal times.
ili) (third law)
The ratio between the cube of the major axis r of a planet’s orbit and the square of its period T
ot revelution has the same value for all the planets; that is,
r*/T?— Clconstant).

The second law, law of areas, follows from conservation of angular momentum.

The first Jaw permits the deduction in which we obtain the attractive solar force on a planet varies wiih
distance from Kepler's third law.
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For simplicity we ghall assume that the planetary orbits are circles with radius r centered at the sun.
Then centripetal acceleration each planet experiences is
a=vir,
where v is its linear crhital speed and can be expressed in the period T and radius r
v=2zr/T.
Hence the acceleration may be expressed as
a=2xr/TE/r=422C/r2,
The acceleration of each planet, and therefore the force exerted on it, varies inversely with the square of its

distance from the sun.
Conversely the Kepler’s laws is deduced from the law of universal gravitation.

[the law of universal gravitation]
the gravitational force law between two bodies os masses M and m that are separated by the distance r are

F=—GMm/r?

we assume that the planet move on the x-y plane and use the polar co-ordinate (r, 8); that is,

X=rcosg¢ ,
y=rsing .

Orbit
Then the acceleration a(—a,) of r-direction Planet
and ag of $-direction are
a = —rldg/dt)* +d*r/dt*
ag =2(dr/dt)(d¢/dt)+rd*s/d1
=(1/r)dir?d¢/dt)/dt

Therefore from the law of motion i} ma=F and ii) may =0,
i) dir/dt® r(dé/dt)*=-GM/r*,
ii) dirdde/dt?>/dt=0, le, ride/dt=Clconstant) ,
this is the law of area.

From these 1, ii), an orbit equation holds as follows :
dX(1/r)/dg+1/r=GM/C? e {a) |

Because from ii) ,
dr/dt  =(C/r*)dr/dé

= —Cd{l/r)/d¢ < (b),
and
dir/der = —CdX1/r)/d¢*dé/db)
=—(C/rEd(1 /Ty d¢? e (e,
hold.

The solution of (&) is an ellipse (a parabola/a hyperbola), ie.
r=(C?/GM)/(1+ecosé) (Kepler s first law) ,
and constant e(>1 , —1 or <1) is an eccentricity.



Gravitational Force and the 4-dimensional Complex Force 233

From the property of an ellipse, its area S and radius of major axis r are
S =x(CGM) /(1 e?)¥e
rm ={CYGM)/(1 &) .
Therefore the period T is
T =27(C3/GM)?/C(1-en)**
= [2=2/(GM)¥?] ro¥® (Kepler's second law) .

the correspondernce hetween a speed at the perihelion v, and the orbit of the planet is as follows :

a speed (at the perihelion r,) an orbit
rde, /dt=(GM/r,)"2 a circle
{GM/r)) <1 d g /dt< (2GM/r)'2 an ellipse
ryde, /dt=(2GM/r,)** a parabola
(2GM /)2 <rdeh, /dt a hyperbola

Because from the equation (2) and (), a point 1, such that d?r/dt?=d*(1/r}/dg*=0 is
ro=C2/GM, r1,deh/dt={GM/r,)"* e ()
This is the same speed as a planet moving on the cirele with radius r.
Multiply (a) by 2d(1/r)/d¢ and integral it. then

2d(1/7)/de ~dH1/D)/ dp?+2/r+d{1/1)/dg = 2GM/h-d(1/1)/dg
(@(1/r)/d )2+ 1/r2 = 2GM/h?r =1/, 2 — 2GM/C?r,
where a distance r, = C*/GM({1+e)=r,/(1+e) at the perihelion is the one which satisfies the equation dr/
dt=d{1/r)/d¢ =0.
Therefore
ride /dt=(1+e)H{GM/r )2 - (e},
And a distance r; at the aphelion is
1/r,% = 2GM/Cr, = 1/1,2—2GM/Cer,
L/, H L =2GM/CH =2 ) = ()

When r,™ (ellipse) then r,=2r,, e=1 and r,d¢,/dt=(2GM/r,)"*(an escape velocity)

§2. The cennection in the 4-dimensional force

Let’s
F, v vl ct 1

F: F.| =d| ' | /dce, V! vl = myd| x | /det,
Fy | v? \'a ¥
F.) Al v Lz

(where m, is a rest mass, r is a proper time} ,

the Minkowski's (4 dimensional) force F and the 4-dimensicnal velocity V..
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Theorem 1.5

Let’ j;=ca,y. §=qey w/c and w is the velocity of charge q,.

A 4-dimension complex force F on a moving charge ¢, with speed 0 in the field E,, E. B is
i =iEs _LL[E +ii-B
F=3,E+JE+ExB+i G, B JxE)

where the underlined part are Lorentz force.

When the charge is stationary, i.e., E,=0, B=0 then F,.=J-E, F=,E~i{l xE).
Therefore the 4-dimension force F is

F 0 ( '
: | x ______ y = Gy
Iy —% x| 0 iz —iy| | 9¥ o {1
I, yv| —iz 0 ix Aoy
F, | iy ix o) [G¥Br

where K is a constant.

We assume that a gravitational [orce is the same form as the ¢lectromagnetic force, then the following

theorem holds.

Theorem 2.7

The connection by the force received from the rest mass M, with distance r is

det/dr 0l X ¥ 7 det/dr
= |l ax/dz | = 73132 | 0 iz —iy _dct dx/dr ‘yﬁ@
r dr dy/dz dr
dv/dr y| —iz ] ix ) ’/
dz/dr z| iv —ix 0 dz/dz

and the connection in paper 7) is a real form of this one.

proof
Let I, be a connection which is torsion {ree and compatible with the metric g;; then the covariant
derivative %V of the vector field (v°, v!, ¥%, v%) is
Voul=dy! FT v e dx!, (%8, %!, xE 5=t %, v, z),
=0.
Therefore
du' = — 1%, +dx!, (I)—=() € soll, 3 < (2)

this means 4 dimenticnal force.

we compare (1) with (2) and can assume that the gravitational [orce by the rest mass My,
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Ol X y 7z

(L"k)lz—(ﬁl" xI 0 iz T, =), =), =0,
vl iz 0 =
2 iy —ix 0

q. e d.
We rewrite the above connection to the polar coordinate form by the coordinate translormation of
itox, v, 2=t 1, 8, &) 1 e,

ct ct

* 1= rsinfcosg - (3)
¥ rsind sing

z rcosd

Corollary 3.
The connection by the force received from the rest mass M, with distance r is

det/dr | o100 0.0 0 0] ol 6 0 9 det/de
e R e TR TR I K PR R L de/de

dr dy/dz | . T T dr ,
: 0l 0 0 i ol1 0 o0 ol 0 0 -cos# rdé/dr

dz/dr | 0 0 —i 0 ol 6 0 0l 0| sind cosé 0 | reinéde /dz

o

Proof.
From(3)

z
[det/dar| (1] 0 0 0 det/dr D
dx/dz | = [ 0] sind-cosé cosfrcosg  -sing dr/dz ?A

dy/dr 0] sind-sing cosg sing cosg rdé/dr ”
dz/dr 0l cose —siné ] rsingdg/dr | .
Therefore
det/dr 1 1] 0 0 0 det/dr
al. . . a | T D !
I dx/dz | =—— | 0| sinf+cos¢  cosf-cosé —sing dridr
dy/dz ‘ 0l sing+sing cosfsing  cosé rdd/dr
dz/dz 0| cos# -sing 0 rsindde/dr
1 0 0 0 det/de
+ [ 0| sinf+cosg cosfrcos¢ - sing d% dr/dr
0| sing-sing cosd-sing  cose | rdé/dr

0! cosd —sing 0 rsinfdg/dz ) |

¥
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and then the connection in the polar coordinate is

det/dr 1 ] 0 0 -1
e N e |
dr dr/dz | = | 0] siné:cosé cosf+cose  sing
rd#/dz 0 sing-sing cosf-sing COsh
rsinfddeg/dz 0 cosé —siné 0
0 (N 0 1 ] 0 0 del/dr
% sindrcosg |0 ising  icosdecosé di:*i | sind+cos¢ cosfecosgd —sing dr/dz
singesing |0 —icosg  icosfrsing 0| sind-sing cosd-sing cos¢ rdd/dr
cosd [0 0 —sing L0] cosd —sinf 0 rsindde/dr
ol 1 0 0 ol 0 0 0 ol 0o 0 0] det/dr
S| SMal g g o] g g -1 0 L O T g L 2 dr/dz
i | d=z dr dr
ol o0 i o1 0 0 o, 0 0 —cosh rdé/dr
0] ¢ =i 0 a0 0 L0l sind cos# 0 rsingde/dr
q. e d.

This connection is as follows :

dict/dzt=—mr *(dct/dr) (dr/dz)

d’r/dr?=—mr *(dect/dr)?+1{d8/dz)2+rsin?8(d¢/dr)?

d(rdg}/dr*= —imr'sing{dct/dz) (d¢p/dz) — (dg/t) (dr/dz) +rsing-cosd(dg/dr)?

d(rsinddg) /dzt=imr~'{dct/dz) (d$/d) ~sind{dg/dr) (dr/d7) —rcos#(dg/dr) (do/dz)
where m=GM,

§ 3. Property of solution of differential equations

Let's §=#/2-1® then the connection is

dct/dz? = —mr *{dct/dz) {dr/dz)

dir/dt?= [mr ? r "{rch@dé/dct)>— {rd®/dct)?) ] (det/d7)®
d{r@d®/dz}/dr=[mr ?*—sh@d¢/det] (det/dr) (rich@dé/dr)
d{r®ch@d¢/d) /dr=[mr?—sh@d¢/det] {det/dz) (rid®/dz}

From (4} + (dct/dz)
dlog{dct/dz)/dz— (dfmr]1/d)
cy=dct/dz--De™, D is constant

From (5
dzr/det? = —[mr-¢~r~' (rd ¢ /dct) 2] (dct/dr}?
where rde¢/dct= ((rch@d¢ /dct) *— (rd®/det) ) 2
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From (6Y+(7) and (6F —{7)
dir’ch®dg/dr+1?d®/dr) /dz = * [mr*dct/dr-sh@d¢/dr] (r’ch@d¢/drtrid8/dr)
dlong (r’ch®dg/dr +r’d®@/dz)dz =+ (mr *dct/dr-sh@d@/dz}
log (r*ch®dé/dr=rid®/dr) = + S {mr-*dct-sh@d¢)
r’ch@dg/dr+12d@/dr=Eexpl+ S (mr 3dct-sh®d¢) ], E is a constant.

Therefore
rich®dg/dr=teh § (mr-det- sh@dg) - {61
rzda,fdr*EshS (mr *dct—sh®dg) ik

d8/ch@dg =th | (mr-*dct —sh@dg).

and
From (672 —{7)™2
r2dg/dr= ({rich@deg/dr) 2 — (r*d@/d )2} =E - (10}
this is the law of area.
From (8, {9) and (0, an orbit equation holds as fellows :
d*(1/)/dgr+1/r=m(D/E) 2™
=m/ (ridg/det)? - {A)

Because from (1)
dr/det= (E/r?)dr/dé
= -Ed(l/r)/d¢ - (B
and
dr/det!=—Ed:(1/r) /dg* (de /dct)
= —(E/r) 3 (1/e) /de® s (0
hold.

the correspondence between a speed at the peribelion r, and the orbit of the planet is as follows :

a gpeed (at the perihelion 1) an orhit

rde /dt= (m/r )t a circle
(m/r, )12 <r,dey /dt< (1 g 2mint)is a quasi-ellipse
ridey /dt= (1 —g2mm)2 a quasi-parabola
(1--e-mmm)biey de, /db < a quasi-hyperbola

Because from the equation @ and {C), a point r, such that d*r/det*=d*(1/r)/d¢*—0 is
ro=(E/D)2e ™™ /m, rodeo/det = (m/ro) ¥ e (D)

This is the same speed as a planet moving on the circle with radius .
Multiply (2) by 2d(1/1}/d¢é and integral it, then
2041/v) fde » d2(1/r) fdg2+2/r » d(1/r}/d¢ = 2m(D/E) 2™ - d(1/r) /d¢
(di1/v)/dg) 2+ 1/r¢— (D/E) %™ =1/r*— (D/E} e
= —{¢/E)?
where a distance r, at the perihelion is the one which satisfies the equation
dr/det=d(1/0) /dg =0 and (De™")?— (E/r}?= {det/dr)2— (dr/d7)?— (rdg/dz)*=c’
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Then
(D/e)zer™mi—(Efery )2 =1, rid¢/det=(1-¢/D)e M) b e )

And a distance r, al the aphelion is

1/ 2= (D/E) setmice =1 /r 2 — (D/E) %etmim = — (¢/E}? |
{(E/Dye= (grmm2 - e2mir) /(] fr,2—1/1,%) =mrpe™™ ™ - (1)
When r, roo{quasi ellipse) then (E/D)?=r 2™ —1) =2 mr,  rd¢ /di— (1—e*™} 2 {an escape

velocity) and D=c.

7)
8)
9)
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