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Abstract

In this paper, we seek the orbit of electron which “inside” of the Bohr radius by
solving the equation. There orbit is between r, (the Bohr radius) and 2R, (the horizon

of the electromagnetic force). The minimal radius orbit by the resonance is a Bohr orbit.
However, by the “apsidal precession” resonance, there are some orbits inside of the
Bohr radius in the nucleus.

1. Preliminaries

1.1 The relativistic Bohr radius and the horizontal orbit
In the classical, we get the Bohr radius I, by the balance in the orbit,
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Therefore, the Bohr radius is I, = ————— =5.2923x107"".
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But in “the relativistic” case, we use the relativistic angular moment as the Planck constant.
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We solve the above equation, and then we get the orbital radius of electron
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formula (5) of r, valid for n<1 and indicated the limited radius in a circle orbit.
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We put the horizon of the electromagnetic force R, = _r( ) , then
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Fig. 1. The energy function.
1.2 The resonance of circle orbit

The Energy of which shift is the parabolic orbit into the circle orbit at any radius I,
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We considered the harmonic oscillator which frequentis v and its energy is h
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where, v, is the frequency of radiation light of the Bohr radius.
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Fig 2. The specific elliptic orbit.
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Moreover this system valid for the opposite direction x = n :1,%,% ... and indicated the radius
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inacircle orbit. Weput x=n= % by the fine structure, n, =
Then r,=6.42435x107".

2. The Orbit Equation

The metricis ds® =—dct® +dr? +r?(sin” 8d¢® + d&?).

We consider the two-body problem concerned with the nuclear and the electron as in one
hydrogen atom. It is assumed that the electron moves on fixed surface. Therefore, we put

/2 . . .
0=——1CQ. Q isaparameter that relates to the angle of rotation on the orbit.

Then the metric is
ds?(= —dcz?) = —dct? +dr?® + r?(cosh? Qdp* —dQ?) (< 0) (10)

and the polar coordinate is (t,r,<Q, @)

Then we get the equation of Kepler's type.
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The main equation is
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And we get the relation from the metric.
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Then the equation of Kepler's type is
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Where C, is the speed constant for energy function and C is the area speed constant.
The main equation is

(_) _(ﬂ) —r (costhw) -1
der
C R 9 keQ . -15
e ) —(=)" -1, R, =—==2.81795x10"m.
=(2ery (Cr) R x

e



Then we get the relation
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Then,

* This means that the circle orbit which has no rotation i.e. Q =0 is not exist.

(19)

S_t: ! - 1 (=cosh Q).
‘ \/1—(rcoshQ(p)2 \/1—R°
dct

r

Especially for r =2R,,

tanhﬂz,/&= &zi,coshQ: 1 = 1 =\/§,
r 2R, \/E \/1_R0 \/1_R0

sinhQ = \/? \/;
P

Y (=1
cr

(20)

Ro
COr
C

(= (21)

3. The flower orbit
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The orbit equation for | is
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And the orbit equation for r is
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We get the solution of this equation of inside of the Bohr radius.

(Example 1) The case a® =1.25(=5/4)

When the (classical) circle orbit ( which is not exist ) in the radius r = 2R, (=5.63588x107"")

and Q =0, i.e., this is not consider Q.

The speed constant foe energy function and the area speed constant are,
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Fig. 5. Ex.1 for0= 0=2r . Fig. 6. Ex.1 for0= 0=27x4.
Then the solution of the orbit equation is

r=-2.817940287410717" *~-15 +
1.4089701437053578 *~-14

1+0.5667500227486313" 1 Sin[1.118033988749895" 9] (24)




And the real part of this solution is
r=-2.817940287410717 *~-15 +
1.4089701437053578 *~-14

1+0.3212055882855739" Sin2[1.118033988749895" O]

. (25)
Therefore the coefficient of apsidal precession is o =1.118033988749895"

and o =1.25(=5/4).

When the apsidal precession is zero «a = 0 then the figure is as follows.

Fig. 7. Ex.1 fora =0.

(Example 2) The case o =1.2(=6/5)

When the (classical) circle orbit in the radius r =1.01954x107** which is the minimum radius
of charge. The speed constant foe energy function and the area speed constant are

C, =2.67321x10°m/s,C =1.88902x10°m?/s.

Then the solution of the orbit equation is

r=-2.81794028741072" *~-15 +
1.6907641709345915 *~-14

1+0.4789167960708896" i Sin[1.0954451151082842" 9] (26)

And the real part of this solution is

r=-2.81794028741072" **-15 +
1.6907641709345915" *~-14
1+0.22936129755880608" Sin2[1.0954451151082842" 6]

(27)
Therefore the coefficient of apsidal precession is « =1.0954451151082842",

and o =1.2(=6/5).




Fig. 8. Ex.2 for0= =27 x5.

The case o =1.1666666666666666 --(=7/6) and a’ =1.1666666666666666 - -(=7/6)
are close to shape of the Example 2, and the next Example 3.
(Example 3) The case o® =1.125(=9/8)

When the (classical) circle orbit in the radius r =1.92421x10™"* which is the minimum radius
of charge. The speed constant foe energy function and the area speed constant are

C, =2.802879x10°m/s ,C = 2.389447 x10°m’/s .

Then the solution of the orbit equation is

r=-2.8179402874107173 *~-15 +
2.53614633104316 **-14

1+0.36467280089849763" i Sin[1.0606601698880804" 6] (28)

And the real part of this solution is

r=-2.8179402874107173" **-15 +
2.53614633104316 " *~-14
1+0.13298625171515513" Sin2[1.0606601698880804" 6]

(29)
Therefore the coefficient of apsidal precession is « =1.0606601698880804 ",

and a® =1.125(=9/8).
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Fig. 9. Ex.3 for0= =27 x8.
4. Conclusion
The electron orbit outside of the Bohr radius r,and n’r,(n=2,3,---) in the nucleus are by the

resonance of the Shift Energy among the orbit.
And more the electron orbit inside of the Bohr radius in the nucleus become the flower orbit by
the apsidal precision resonance of the orbit.
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