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Abstract 

  In this paper, we seek the orbit of electron which “inside” of the Bohr radius by 

solving the equation. There orbit is between 
1r (the Bohr radius) and 

02R (the horizon 

of the electromagnetic force). The minimal radius orbit by the resonance is a Bohr orbit. 

However, by the “apsidal precession” resonance, there are some orbits inside of the 

Bohr radius in the nucleus. 

1. Preliminaries 

 

1.1 The relativistic Bohr radius and the horizontal orbit 

  In the classical, we get the Bohr radius 
1r  by the balance in the orbit, 
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  But in “the relativistic” case, we use the relativistic angular moment as the Planck constant. 
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  We solve the above equation, and then we get the orbital radius of electron 

2 2 2 2 2 2 2

0 0

2 2

0

( c ) {( c ) } 4 (2 c ) ( h)

2 (2 c )

e e e

n

e

n h m n h m k e m k e n
r

k e m





 −
=  

   

(5) 

 

(Cf. 

2

2 2

0

( )

(2 )
n

e

nh
r

k e m
=  in classical). 

  Especially 1n = , we get 

2
2 20

11

1 2 2

0

4
(1 1 ( ) )

hc
5.29137856 10 .

2(2 ) e

k e
h

r
k e m





−

+ −

= =  Moreover the 

formula (5) of 
nr  valid for 1n 

 
and indicated the limited radius in a circle orbit.  
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1.2 The resonance of circle orbit 

  The Energy of which shift is the parabolic orbit into the circle orbit at any radius r ,  

Fig. 1. The energy function. 
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  We considered the harmonic oscillator which frequent is   and its energy is 2 2[ / ]s kgm s
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Fig. 2. The specific elliptic orbit. 
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  Moreover this system valid for the opposite direction
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1

68
x n= =  by the fine structure, 

2

04 1

hc 68.5165
s

k e
n


= = .  

 Then    

 

2. The Orbit Equation 

 

The metric is 
2 2 2 2 2 2 2d dc d (sin d )s t r r d  = − + + + . 

  We consider the two-body problem concerned with the nuclear and the electron as in one 

hydrogen atom. It is assumed that the electron moves on fixed surface. Therefore, we put 
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  Then the metric is  
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  Where 
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is the speed constant for the energy function and C

 
is the area speed constant. 
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Fig. 3. The sphere type. Fig. 4. The anti-de sitter type. 
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  (Example) The circle orbit 
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  We get the solution of this equation of inside of the Bohr radius. 

(Example 1) The case 
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  Then the solution of the orbit equation is 

r 2.817940287410717`*^-15

1.4089701437053578`*^-14

1 0.5667500227486313` i Sin 1.118033988749895` .  (24) 

    Fig. 6. Ex.1 for 0 2 4  ≦ ≦ .       Fig. 5. Ex.1 for 0 2 ≦ ≦ . 

0
0

0 6 2

0 0

0 0

0

c
2

2c 2c 1.6895944905201704 10 m /s,

1 1
2

RR
RrC r R R

R R

r R

−= = = = 

− −

00

0

1
2 82

0

0 0

0

c c
e e 2ce 2.5715114345599952 10 m/s.

1 1
2

RR

RrC
R R

r R

−− −

= = = = 

− −



 9 

-1 10
-14

-5 10
-15

5 10
-15

1 10
-14

-1 10
-14

-5 10
-15

5 10
-15

1 10
-14

-1 10
-14

-5 10
-15

5 10
-15

1 10
-14

-7.5 10
-15

-5 10
-15

-2.5 10
-15

2.5 10
-15

5 10
-15

7.5 10
-15

  And the real part of this solution is 
r 2.817940287410717`*^-15

1.4089701437053578`*^-14

1 0.3212055882855739` Sin2 1.118033988749895`

.   (25) 

  Therefore the coefficient of apsidal precession is 1.118033988749895`  = , 

and 
2 1.25(=5/4) = . 

  When the apsidal precession is zero 0 = then the figure is as follows. 

 

 

 

 

 

 

 

 

 

(Example 2) The case 
2 1.2(=6/5) =  

  When the (classical) circle orbit in the radius 
141.01954 10r −=   which is the minimum radius 

of charge. The speed constant foe energy function and the area speed constant are 

8

0 2.67321 10 m/sC =  ,
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  Then the solution of the orbit equation is 
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  Therefore the coefficient of apsidal precession is 1.0954451151082842` = , 

and 
2 1.2(=6/5) = . 

 

          Fig. 7. Ex.1 for 0 = . 
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  The case 
2 1.1666666666666666 (=7/6) =  and

2 1.1666666666666666 (=7/6) =   

are close to shape of the Example 2, and the next Example 3. 

(Example 3) The case 
2 1.125(=9/8) =  

  When the (classical) circle orbit in the radius 
141.92421 10r −=   which is the minimum radius 

of charge. The speed constant foe energy function and the area speed constant are 

8

0 2.802879 10 m/sC =  ,
6 22.389447 10 m /sC −=  . 

  Then the solution of the orbit equation is 

r 2.8179402874107173`*^-15

2.53614633104316`*^-14

1 0.36467280089849763` i Sin 1.0606601698880804` .  (28) 

  And the real part of this solution is 

r 2.8179402874107173`*^-15

2.53614633104316`*^-14

1 0.13298625171515513` Sin2 1.0606601698880804`

.  (29) 

  Therefore the coefficient of apsidal precession is 1.0606601698880804` = , 

and 
2 1.125(=9/8) = . 
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      Fig. 8. Ex.2 for 0 2 5  ≦ ≦ . 
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4. Conclusion 

  The electron orbit outside of the Bohr radius 1r and 
2

1( 2,3, )n r n =   in the nucleus are by the 

resonance of the Shift Energy among the orbit. 

  And more the electron orbit inside of the Bohr radius in the nucleus become the flower orbit by 

the apsidal precision resonance of the orbit. 
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