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Abstract

The purpose of this paper is to show the new concept of the Lorentz transformation, and its
application to the electromagnetic theory.

Using the Lorentz transformation, we have a many coordinate systems in Minkowski spaces.
However we can treat these coordinate systems only in one coordinate system.

Authors propose the helpful items which are simultaneous reach surface and hyperbolic radian
of the situation in a Minkowski space, and then we can get the essence of some events in the
4-dimensional Time-space (the Minkowski space).

In the electromagnetic theory, we have a new phase of a moving charge. Moreover we will have

an idea of “stream charge” in place of the electric current.1?
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1. Preliminaries

1.1 The component of a vector and its rotation

For simplicity, we substituted v, =0 for the velocity vector v :v(vx WV ,VZ) . Then the rotation by

the angle @, is as follows:
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Then the rotation of the component V(v,,V, ) is

v, cosg, sing, |V, ; = =
X = ] NG Figure 2.E = E(E
v, -sing, cosd, )\ v,

.cp) = E((E',cp)

which is showed by blue arrows in Figure 1. However, the substance v is still unbudging.

Definition. In a Euclid space, a velocity vector is translated as above (*) by the rotation, we call this

physical guantity “proper”.

1.2 The relation between the rotation and the Lorentz transformation

If we use two axes e, =e“ct, e,=e”x and angle 6, then the coordinate [

v v
V:(el’GZ)[th] is changed into the coordinate (Vf‘j of the vector v={(e

X X

rotation 6,
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Then its coordinate transformation is y = By this transformation, the

—-sing, cosg, )\ v,
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substance of Vv(v,,V,) isunbudging.

We put a:O,ﬂ:% in the coordinate transformation, then the axes become e, =ct, e, =ix

v v v
and the coordinate (V“j of vectorv=(ct,ix)£v°tJ=(ct,x)(i\;‘j is changed into the coordinate

X X X

V' Vv v'
( f‘] of the vector v'=(ct,ix)[ f‘j:(ct,x)[_ ftj
v v iv

X X

V' cosg, —ising,\(v cosh®, —sinh®, (v
Therefore | |=| . ° | I o E I |,8,=-i®, holds.
iv —-ising, cos@, )\iv, —-sinh®, cosh®, J\iv,

X

This rotation
Vo) [ Va R Vig) (Vi) (c0sh®, —sinh®, )V, ) %)
V. ) v, v' ) liv, ) |-sinh®, cosh®, |V,

is a Lorentz transformation when the particle moves to the x—direction with the speed v_ tanh @,
c

but, the meaning of this angle ®, =i6, is unknown.

Definition. In_a Minkowski space, a velocity vector is translated as above (**) by the Lorentz

transformation, we call this physical quantity “proper”.

Example 1 (The 4-dimensional momentum).

When a particle is stable, then its energy E is mc® and the momentum is zero. Therefore, when
the particle is moving with the velocity v for the x-direction, its component is Vv(y, 35,,0,0) by

use of the 4-dimensional velocity. Therefore we can put the 4-dimensional momentum which is

showed by blue arrows in Figure 2.

[
cp mc’y3

Where E =mc’y isaenergyand p=mcyf isamomentum



mc 1
E = ——— ~ MC® + = mV? +ees (Energy),
V2 2
1--5
C
mv mv?
Pp=—/F——=~mv+ +eee (Momentum).
2 2
V 2C
C
Vi
And 7:;:u—°:cosh® 7B, =¥=U?X=Sinh®,
Vv C Vv,
1- (1) 1-(*)

Furthermore, a part of signatures “-” represent the invariance of the Lorentz transformation, i.e.
means the contravariance of vectors. We call this expression matrix vector and Lorentz form.
The proper physical guantity (4-dimensional momentum) is represented by the same point in the

Minkowski space even if the component is changed by the L orentz transformation.

The Lorentz transformation is expressed by using the matrix vector and Lorentz form as follows;

E
E _ Vs E 7+ ,}/Jr=C03h9,7,=(5inh9’0’0)’
p _77 p _Y— 2 2

where u—°=7/=cosh®,u—x=7/,BX =sinh®.
c c



2. The new items

Theorem 1.

In Figure 3, the angle ®=i@ is the arc length from A to B in the simultaneous reach line. We

named this angle ® a hyperbolic radian.

(Proof)

In general, the arc length of the circle (X, y) =r,(cosé,sin ) is

o | dx 2 dy 2 Hﬁ 0
L= (d_e) +(@) do=r,[ Vsin’6+cos’ 0do=r,[ do=r,6.

We use the same technique in the Figure 3,

and the velocity :X = tanh ® of a particle is constant.
ct
Then the formula @ =U, =ccosh®,
T

and %:uxzcsinh(a holds.
T

When the proper time 7, passes,

then the particles reach

A (ct,x) = A(cr, cosh®,cz,sinh ®)

and this point is

in the surface (ct)® —x* =(cz,)* in the Minkowski space. We call this hyperbolic surface

simultaneous reach surface.

Figure 3.A(€7,0),

(cz, cosh®,cz,sinn ®) , A, (cz, cosh(®+Q),cz,sinh(® + B")

Thus the arc length L on the hyperbolic line from the point Ag(cz,,0) to the point A, is

Y ETE T

sinh?@d® = woj do=cr,0.

Therefore we can define the angle ®(=—16) as the same arc length @ .

(Q.ED.)



Corollary

This arc length ® and the simultaneous line (or surface) are new items and admissible to the
Lorentz transformation.

(1)Any two points in the simultaneous line are shiftable each other by the Lorentz transformation.

(2)The composition of speed is the sum of the arc length.

(Proof)
(1) When two points (ct,x)=(czcosh®,czsinh®) , (ct',x") =(czcosh(®+®"),crsinh(®+O")
are on the simultaneous reach line in the future.
Then
(ct',x) =(crcosh(®+®"),crsinh(®+O")
= cr(cosh ®cosh ®'+sinh®sinh ®',cosh ®sinh ®'+ sinh ®cosh ®")
=(ctcosh®'+ xsinh®',ctsinh®'+ xcosh®") .

v v
(2) The case of two speeds —=tanh®,— =tanh®’, then the composition of these speeds is
C C

tanh(®+®") . This is the speed which corresponds to the sum of the arc length.
(Q.E.D.)
Example 2 (Time dilation and Length contraction).

The 4-dimensional velocity (proper physical quantity) is represented by the same point in the

Minkowski space even if the component is changed by the Lorentz transformation.

(i) The Lorentz transformation in the Minkowski space is represented as thgz( point in the simultaneou

surface in Figure 4.
We put the point A, (C7,,0).
Then the point B(cz,cosh®,0) means the “time dilx{

distanceeadh surface

(ii)We differentiate the equation of the same
distance surface (X)*+(y)* +(z)* —(ct)* =1,
then we get 2xdx +2ydy +2zdz —2ctdct =0..

reach sutnface

Therefore OC, L C,E (the orthogonal)

and C,E || OA (the parallel).

We put the point C, (0, X,)

and calculate the point E(0, X) as
DE x,cosh®-X
DC, B X, Sinh ®

Figure 4.A,(¢740), A (€7, cosh
is the leaning tanh®, C(0,x,) ,C/(X,sinh®,




X, sinh? @
cosh®

X, sinh’®
cosh® cosh®'

=X,C0sh®—-X .. X =x,c08h®—

Therefore the point E is (0, L) . This means the * length contraction”.
cosh®

3. The application to the electromagnetic theory
The moving charge ( has an expression as a 4-dimensional matrix vector.

a7 _4 {uo } _we call the
u

When its velocity is v:v(vx,vy,Vz), then = {

qw}

J

gy a the relativistic charge , =~ =(Qyf a stream charge and a “en bloc” which means all
c

together.
+ q}/ +
Its covariant vector is { } , a pair of signatures “+” represent the invariance of the
=07
Lorentz transformation.

Example 3
There are two charges ( at the origin and Q' at the point (X,y,0) and the distance is

r|=x*+y?® inFigure5.

. . + ﬂ +
(i)The potential of q is ¢ = ! r which is covariant vector.
—CA 4rs, 0
y
The field is
oq’
, To Terq 71 ,
E, _ 1 oct F _ q 0 ¢ (
E-icB A, 0 0 brg,r’ (x,y,2) |
or X
The force at the point (x,y,0) is Figure 5.

It [ __a |0 B A Y A )
f|  dzgr’ (x,,0) 0] 4z, (x,y,0)



(if) When the two charges move v =v(v,,0,0) in Figure 6.
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The potential is V A} :41 r : Qe —>
—C 7[80 (_qy_rﬂx’oyo)
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The field is )
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Figure 6.
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Where i— and r have the same meaning as in the case (i).
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+

q 10
47[‘90r3|: (X,yy+i7ﬂxz,72—i7ﬁxy)}

g |0 +
47Z'¢S‘OI"3 (X,}/y,}/Z)—i}/ﬂx(O, —iZ,iy)

(Cf. when the charge “en bloc” q= {qy q ﬁ} is back building then the field is
7




The force at the point (x,y,0) is

ik [T wnool
fl]  dmer’ X7y, =iB.Y) (9'75,,0,0)

_q [Q'Vﬂxx }
4re,r’ @7x7y-Q'y=1B.Y-a'1B.—iyBY-d'y +iry-q'7B,)
_ 99’ | 7BX ’
47rgor3 (rx,y,0) '

Theorem 2.
oo ) ) ldx- I 'dx’
The force f. = —M by the stream charge is the same type F, = —ﬂo—z between
A7y 4rr
two parallel currents | and |' in the conductor.
(Proof)

We take the current | (coulomb/sec) in two conductors with distance “I . There is moving charges

density p, (coulomb/m) in these conductors. When this speed is V (m/sec), the current is

I = p,V (coulomb/sec) and the stream charge is X pquyﬂ (coulomb).
c

For simplicity, we assume that the charge q = pqu and its speed are homogeneous.

By the above case (ii), Example 3.

The field generated by the moving charge is devided into two parts

- E( + :— Et + +— E( +
E —icB | E —icB |, E-icB @B

(1) The part of the field for the relativistic charge qy (= o,y dx)

- Et ' _ qy ) 7ﬂxx '
E-icB |, 47z, (rx,y,2)



Et = qy 3 ﬂxx, E = qy (7)(! y’ Z) and CB = qy (0’0’0)
Are,r

Arg,r? Arg,r?

Then the force to the relativistic charge 'y "' atthe point (X,Y,0) is

_{ft } :qq'w'[%x }
f(qm'y') 4ﬂ80r3 (yx,y,O) .

Thus the force to the stream charge q'yf at the point (X, y,0) is

[ft } :qq'W'ﬁx_[VX }
flaram A7zl (78,%,0,1y)

+

(2) The part of the field for the stream charge qyB(= p,yBdx = £)
c

& L wB [ +8u=i
E—icB |, , 475" (=Bxiz,—iy) | T ¢

— CﬂO js 7 _7/X
B 47Z'r3 (_7ﬂxX1%)) - I(Oi =z, y)

T 1 _ ¢’ iy

‘dre, Am

E __C,u_oj;yx, E = C,uoj; (-78,,0,0) and CB:C’U—OJ;(O,—Z,y) ;the latter is similar to a
4xr 4y Arxr

t

magnetic field which is generated by the current, that is,

4 4 Cip J, T
cB = 0 dx(0,-z,y) = 0 dx,0,0)x(0,y,z) =0 =S x— .
2 X0 -2,y) = 2 pp(0x,0,0)x(0,y,2) = o oo

Then the force to the relativistic charge ¢'y "' at the point (X,y,0) is

{ﬂ } :qu*/a‘[—yx }
3 .
f (a7B.a'7) 4'72-‘90r (_7ﬂxxv 0,—iy)

Thus the force to the stream charge q'yf at the point (X, Y,0) is

_Ft ] zfﬂli[ﬂﬂx ]:M¢J;[ﬂ@x }
T laram Ares,r° (=r%~=Y,0) 4rr® (=yX,—Y,0)

_ /uo js ) js '
Axr®

Therefore the force to the Y -direction is fy = y,x=0,y=r.

10



IUO js ) js I
Thus f =—"—"=—=
y 4rr?

72 B2 =sinh? © = 4sinh’ %cosh2 % _ 4sinh? 2 4 4sinh* €

QED

Corollary.

We take account of the effect from the relativistic charge which generate the force of repulsion

. 0
Then the force is decreased by the amount 4sinh* — .

(Proof)

When the energy pours into the conductor and moves the charge (,

then E]: {q

} changes to [q}/ } .
(0,0,0) (975,,0,0)

Therefore, the 4-dimensional charge in the conductor is

ri ‘{qy } _{q } i '{q(y—n }
(975,,0,0) (0,0,0) (978,.0,0)

. . Ta -1 ’
Then its potential of the covariant vector is [¢ } = 1 r
—CA 4re, 3 (qyﬂx 0.0)
r ) 1
- - B Et !
Ths by the (1) and (2),Theorem 2, the field is ) ,
E —icB
_q |0 " q o '
-~ Amgr? (X yy+iyBzyz—igBy)| Azer’ (x,y,2)
_ szuoq o T
4zr’ O,(y-Dy+iyB.z,(y -Dz-iyBy) |
g [0 T
 Anr® O.(7-Dy.(» -)2)-iyB,(0,-z,y) |
2 .
C C
E =0 E =90, (y-1)y,(r-1)2) and cB =) (0,2y)
Arr Arr

Therefore the magnetic field of the stream charge in the straight conductors is

CBZ — C/uo js de — Cluo js
A

yy=r.
(x2+y2)g 2rr

Moreover, the force between two infinitesimal conductors with distance y=r is

11




ST [T wonol
f]  4ar O.(r =Dy.-i78.y) (a'»8,,0,0)

o .
_omaa’ | (@
A (7 =D’y-1BIBY
B (y =Dy +i(y —DyB.Y)
_ C,uoqqI |0 :l
4rr® (0,-2(y-1),0) | °

o

> (Cf. Theorem 2).

where 2(y —1) = 2(cosh ® —1) = 4sinh?

(Q.E.D.

Conclusion

The authors propose a new idea “en bloc” which is a component of the moving charge or particle in
the Minkowski space by the Lorentz transformation.

This notation is very helpful for getting our ideas in shape. The following conclusions are drawn:
(1) We can describe the some event in any coordinate system on the Minkowski space.
(2) We clarify the relation between stream charge and current.
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