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Abstract 

 

The purpose of this paper is to show the new concept of the Lorentz transformation, and its 

application to the electromagnetic theory.  

Using the Lorentz transformation, we have a many coordinate systems in Minkowski spaces. 

However we can treat these coordinate systems only in one coordinate system. 

Authors propose the helpful items which are simultaneous reach surface and hyperbolic radian 

of the situation in a Minkowski space, and then we can get the essence of some events in the 

4-dimensional Time-space (the Minkowski space). 

In the electromagnetic theory, we have a new phase of a moving charge. Moreover we will have 

an idea of “stream charge” in place of the electric current.
[1],[2]

 

 

key words: Lorentz transformation,Minkowski spaces, 

Simultaneous reach surface,Hyperbolic radian,Stream charge,En bloc 

 

Contents 

1. Preliminaries        1 

1.1 The components of a vector and its rotation    1 

1.2 The relation between the rotation and the Lorentz transformation  2 

2. The new items        4 

3. The application to the electromagnetic theory     6 

 

 

 



 2 

1. Preliminaries 

1.1 The component of a vector and its rotation 

For simplicity, we substituted 0zv 
 
for the velocity vector  , ,x y zv v vv v . Then the rotation by 

the angle 
0  is as follows: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 

Then the rotation of the component ( , )x yv vv is              
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・・(*)                  Figure 2. 

 which is showed by blue arrows in Figure 1. However, the substance v  is still unbudging. 

Definition. In a Euclid space, a velocity vector is translated as above (*) by the rotation, we call this 

physical quantity “proper”. 

 

 

 

 

1.2 The relation between the rotation and the Lorentz transformation 

 If we use two axes 
i

1 ce te , 
i

2 e xe  and angle 
0 , then the coordinate 

ct

x

v

v
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 
 

 of  vector 

c

1 2( , )
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v
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  
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  

 
v e e  by the 

rotation 
0 . 

Then its coordinate transformation is 
c 0 0 c

0 0

' cos sin

' sin cos

t t

x x

v v

v v

 

 

    
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 By this transformation, the 
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substance of c( , )t xv vv  is unbudging. 

We put 0  ,
2


   in the coordinate transformation, then the axes become 

1 cte , 
2 ixe  

and the coordinate 
ct

x

v

v

 
 
 

 of vector
c c

(c ,i ) (c , )
i

t t

x x

v v
t x t x

v v

   
    

   
v  is changed into the coordinate 

c'

'

t

x

v

v

 
 
 

 of the vector 
c c' '

' (c ,i ) (c , )
' i '

t t

x x

v v
t x t x

v v

   
    

   
v

.

 

Therefore 
c 0 0 c 0 0 c

0 0 0 0

' cos isin cosh sinh

i ' isin cos i sinh cosh i

t t t

x x x

v v v

v v v

 

 

          
        

          
,

0 0i     holds. 

This rotation 

 
c c
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t t

x x

V v

V v

   
   

   
 c c 0 0 c

0 0

' ' cosh sinh

' i ' sinh cosh

t t t

x x x

V v V

V v V

        
       

        
・・(**) 

is a Lorentz transformation when the particle moves to the x-direction with the speed 
0tanh

c

v
 

 

but, the meaning of this angle 
0 0i   is unknown. 

Definition. In a Minkowski space, a velocity vector is translated as above (**) by the Lorentz 

transformation, we call this physical quantity “proper”. 

 

Example 1 (The 4-dimensional momentum). 

When a particle is stable, then its energy E  is 
2cm  and the momentum is zero. Therefore, when 

the particle is moving with the velocity v  for the x-direction, its component is ( , ,0,0)x v  by 

use of the 4-dimensional velocity. Therefore we can put the 4-dimensional momentum which is 

showed by blue arrows in Figure 2. 

2

2

c

c c

E m
E

m





  
  

    
   p

, 

Where 
2cE m   is a energy and cm p  is a momentum 

 

 

 



 4 

2
2 2

2

2

c 1
c

2
1

c

m
E m mv

v
  



(Energy),  

3

22

2

2c
1

c

m m
m

v
  



v v
p v (Momentum). 

And 0

2

1
cosh

c
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c
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,
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1 ( )
c
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, 

 

Furthermore, a part of signatures “-” represent the invariance of the Lorentz transformation, i.e. 

means the contravariance of vectors. We call this expression matrix vector and Lorentz form. 

The proper physical quantity (4-dimensional momentum) is represented by the same point in the 

Minkowski space even if the component is changed by the Lorentz transformation. 

 

The Lorentz transformation is expressed by using the matrix vector and Lorentz form as follows; 

c c

E E
 

 

 

 

   
                       

γ γ
p p

, cosh
2

 


 , (sinh ,0,0)

2



γ , 

where 0 cosh
c

u
   , sinh

c

x

x

u
   . 
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2. The new items 

Theorem 1. 

In Figure 3, the angle i  is the arc length from A to B in the simultaneous reach line. We 

named this angle   a hyperbolic radian. 

(Proof) 

In general, the arc length of the circle 0( , ) (cos ,sin )x y r    is 

2 2

2 2

0 0 0
0 0 0

d d
d sin cos d

d d

x y
L r r d r

  

     
 

   
        

   
   . 

We use the same technique in the Figure 3, 

and the velocity 
d

tanh
dct

x
  of a particle is constant. 

 Then the formula 
0

dc
ccosh

d

t
u


   ,  

and 
d

csinh
d

x

x
u


    holds. 

When the proper time 
0  passes,  

then the particles reach 

1(ct, )A x  1 0 0(c cosh ,c sinh )A      

and this point is      Figure 3. 

in the surface 2 2 2

0(c ) (c )t x    in the Minkowski space. We call this hyperbolic surface 

simultaneous reach surface. 

Thus the arc length L  on the hyperbolic line from the point A 0( 0c ,0) to the point A 1 is 

2 2

2 2

0 0 0
0 0 0

d dc
d c cosh sinh d c d c .

d d

x t
L   

     
             

    
    

Therefore we can define the angle ( i )    as the same arc length  . 

(Q.E.D.) 

 

 

 

 

 

 

 

'ct

O ct

t

0cL  

x ''ct



0A

1A

2A

'

0 0(c ,0)A  1 0 0, (c cosh ,c sinh )A    2 0 0, (c cosh( '),c sinh( '))A   

  simultaneous reach surface
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Corollary 

This arc length  and the simultaneous line (or surface) are new items and admissible to the 

Lorentz transformation. 

(1)Any two points in the simultaneous line are shiftable each other by the Lorentz transformation. 

(2)The composition of speed is the sum of the arc length. 

(Proof) 

(1) When two points (c , ) (c cosh ,c sinh )t x     , (c ', ') (c cosh( '),c sinh( '))t x      

are on the simultaneous reach line in the future. 

Then 

(c ', ') (c cosh( '), sinh( '))t x c     

c (cosh cosh ' sinh sinh ',cosh sinh ' sinh cosh ')            

(c cosh ' sinh ',c sinh ' cosh ')t x t x       . 

(2) The case of two speeds tanh
c
 

v
,

'
tanh '

c
 

v
, then the composition of these speeds is 

tanh( ') . This is the speed which corresponds to the sum of the arc length. 

(Q.E.D.) 

Example 2 (Time dilation and Length contraction). 

The 4-dimensional velocity (proper physical quantity) is represented by the same point in the 

Minkowski space even if the component is changed by the Lorentz transformation. 

 

(i)The Lorentz transformation in the Minkowski space is represented as the point in the simultaneous 

surface in Figure 4. 

We put the point 0 0(c ,0)A  . 

Then the point 0(c cosh ,0)B    means the “time dilation”. 

(ii)We differentiate the equation of the same  

distance surface 
2 2 2 2( ) ( ) ( ) (c ) 1x y z t    ,  

then we get 2 d 2 d 2 d 2c dc 0x x y y z z t t    .. 

Therefore 1 1OC C E (the orthogonal) 

and 1 1C E OA (the parallel). 

We put the point 0 0(0, )C x  

and calculate the point (0, )E X  as 

0

1 0

cosh

sinh

x XDE

DC x





is the leaning tanh , 

 

 

Figure 4.

x

ct

'ct

'x

  simultaneous reach surface

0A

1A

O

1C
0C

E

D

B

1 0 0, (c cosh ,c sinh )A   
0 0(c ,0)A 

0 0(0, )C x 1 0 0, ( sinh , cosh )C x x 

0, (c cosh ,0)B  

0, (0, cosh ).D x 

  same distanceeach surface
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2

0
0

sinh
cosh

cosh

x
x X


 


 ∴

2

0 0
0

sinh
cosh

cosh cosh

x x
X x


  

 
. 

Therefore the point E is 0(0, )
cosh

x


. This means the “ length contraction”. 

 

 

3. The application to the electromagnetic theory 

The moving charge q  has an expression as a 4-dimensional matrix vector. 

When its velocity is ( , , )x y zv v vv v , then 
0

c

q uq
q

q





   

   
    

   u
, we call the 

q  a the relativistic charge , 
c

sj q   a stream charge and  q   “en bloc” which means all 

together.  

Its covariant vector is 
q

q





 

 
 

 
, a pair of signatures “+” represent the invariance of the 

Lorentz transformation.  

 

Example 3 

There are two charges q  at the origin and 'q  at the point ( , ,0)x y  and the distance is  

2 2x y r  in Figure 5.  

(i)The potential of q is 
0

1

c 4

q

r




 
   
       

 0
A

which is covariant vector.  

The field is                                                            

ic

tE
 

 
 

 E B
0

1 c

4

q
t

r


 
  
      
       

0
r

3

0

0

( , , )4

q

x y zr

 

 
  

 
. 

The force at the point ( , ,0)x y  is                                    Figure 5. 

 

3 2

0 0 0

0 ' 0'

( , ,0) ( , ,0)4 4

tf qq qq

x y x yr r 

       

       
        

       0f
.

 

x  

y  

'q

q




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(ii) When the two charges  move ( ,0,0)xvv v  in Figure 6. 

The potential is 
0

1

c 4
( ,0,0)x

q

r

q

r






 

 
 
  

   
    

  

A
. 

The field is 
ic

tE
 

 
 

 E B
                                          

Figure 6. 

0

c1

4
( , , ) ( ,0,0)

c

x

x
x

q

t x r

q

x t y z r

 


 

           
   

                 

. 

Where 
ct




,

x




,     and r  have the same meaning as in the case (i). 

0

( )( )
1

4
( , , )( )

x

q

x r

q

x y z r







 
 

 
 

   
    

  

0

( , , ) ( ,0,0)

1
( )( ,0,0)

4

i( , , ) ( ,0,0)

x

x

x

x

q

x y z r

q

x r

q

x y z r












 
   

    
 
 

   
 
   

        

33

0 0

3 3 3 3 3 3

1 1

4 4
( , , ) ( ,i , i )

xx

x x x x

q xq x

rr

q x q z q yq x q y q z

r r r r r r

  

       

  

  
  

    
    
       

3

0

0

( , i , i )4 x x

q

x y z z yr    

 

 
  

  
 

3

0

0

( , , ) i (0, i , i )4 x

q

x y z z yr   

 

 
  

  
 

(Cf. when the charge “en bloc” 
q

q
q





 

 
  

 
 is back building then the field is 

x  

y  

'q

q




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ic

tE
 

 
 

 E B
0

1 c

4
( , , ) ( ,0,0)x

q

t r

q

x y z r





   
   

   
   

              

.  ) 

 

The force at the point ( , ,0)x y  is 

3

0

0 '

( , , i ) ( ' ,0,0)4

t

x x

qf q

x y y qr



  

    

    
           f

 

3

0

'

( ' , ' ' , i ' i ' )4

x

x x x x

q xq

q x y q y q y q y qr



        

 

 
  

       
 

3

0

'

( , ,0)4

x xqq

x yr





 

 
  

 
. 

 

 

Theorem 2.  

The force 0

2

'

4

s s
r

j j
f

r






  by the stream charge is the same type 0

2

' '

4
r

Idx I dx
F

r






  between 

two parallel currents I  and 'I  in the conductor. 

(Proof) 

We take the current I (coulomb/sec) in two conductors with distance “ r ”. There is moving charges 

density q (coulomb/m) in these conductors. When this speed is v (m/sec), the current is 

qI  v (coulomb/sec) and the stream charge is 
c

s
q

j
dx  (coulomb).  

For simplicity, we assume that the charge qq dx  and its speed are homogeneous. 

By the above case (ii), Example 3. 

The field generated by the moving charge is devided into two parts 

( ) ( ) ( )
ic ic icq q

t t t

q

E E E

 

     

     
      

        β
E B E B E B

 

(1) The part of the field for the relativistic charge ( )qq dx    

( )

3

0
ic ( , , )4q

t xE xq

x y zr





   

   
   

   E B
 



 10 

3

04
t x

q
E x

r





 ,

3

0

( , , )
4

q
x y z

r





E  and 

3

0

c (0,0,0)
4

q

r




B  

Then the force to the relativistic charge ' 'q   at the point ( , ,0)x y  is 

3

0( , ' ')

' '

( , ,0)4

t x

q q

f xqq

x yr
 





   

   
   

   f
.

 

Thus the force to the stream charge 'q   at the point ( , ,0)x y is 

3

0( , ' )

' '

( ,0, i )4

t x

xq q

xf qq

x yr
 

 



  

  
   

   β
f

.

 

 

 

 

(2) The part of the field for the stream charge ( )
c

s
q

j
q dx     

3

0( )
( ,i , i )ic 4

t x

xq

xE q

x z yr






  
  

        β
E B

,
0 0 2

1

c
    

0

3

c

( ,0,0) i(0, , )4

s

x

xj

x z yr





 
 

  
  

  

,
2

0

0

c1

4 4



 
  

0

3

c

4

s
t

j
E x

r





  , 0

3

c
( ,0,0)

4

s
x

j

r





 E  and 0

3

c
c (0, , )

4

sj z y
r




 B ,the latter is similar to a 

magnetic field which is generated by the current, that is, 

2 2

0 0 0

3 3 2

c c c
c (0, , ) ( ,0,0) (0, , )

4 4 4

s
q q

j
dx z y dx y z

r r r r

  
   

  
     

r
B . 

Then the force to the relativistic charge ' 'q   at the point ( , ,0)x y  is 

2

3

0( , ' ')

'

( ,0, i )4

t x

xq q

xf qq

x yr
 

 



  
  

        β
f

.

 

Thus the force to the stream charge 'q   at the point ( , ,0)x y is 

2 2

0

3 3

0( , ' )

' '

( , ,0) ( , ,0)4 4

xt x xs s

q q

qqf x xj j

x y x yr r
 

   

  

     
      

      
        β

f
.

 

Therefore the force to the y -direction is 0

3

'

4

s s
y

j j
f y

r






  , 0,x y r  . 



 11 

Thus 0

2

'

4

s s
y

j j
f

r






  ,

2 2 2 2 2 2 4sinh 4sinh cosh 4sinh 4sinh
2 2 2 2

x 
   

      

                                                                          Q.E.D 

 

Corollary. 

 We take account of the effect from the relativistic charge which generate the force of repulsion. 

Then the force is decreased by the amount 
44sinh

2


. 

 (Proof) 

 When the energy pours into the conductor and moves the charge q , 

then 
(0,0,0)

q
q

 

 
  

 
 changes to 

( ,0,0)x

q

q





 

 
 
 

. 

Therefore, the 4-dimensional charge in the conductor is 

( 1)

( ,0,0) ( ,0,0)(0,0,0)x x

q qq
q

q q

 

 

    
    

       
    

 

Then its potential of the covariant vector is 
0

( 1)

1

c 4
( ,0,0)x

q

r

q

r






 

 
 

  
   

    
  

A

.

 

Ths by the (1) and (2),Theorem 2, the field is 
c

tE

i

 

 
 

 E B
, 

3 3

0 0

0 0

( , i , i ) ( , , )4 4x x

q q

x y z z y x y zr r    

   

   
        

 

2

0

3

0c

(0, ( 1) i , ( 1) i )4 x x

q

y z z yr



   

 

 
  

    
 

2

0

3

0c

(0,( 1) ,( 1) ) i (0, , )4 x

q

y z z yr



  

 

 
  

   
  

. 

0tE  ,

2

0

3

c
(0, ( 1) , ( 1) )

4

q
y z

r


 


  E  and 0

3

c
c (0, , )

4

sj z y
r




 B  

Therefore the magnetic field of the stream charge in the straight conductors is  

0 0

3

2 2 2

c c
c

4 2
( )

s s
z

j jydx
B

r
x y

 

 
 


 , y r . 

Moreover, the force between two infinitesimal conductors with distance y r  is 
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0

3

0 '( 1)c

(0, ( 1) , i ) ( ' ,0,0)4

t

x x

qf q

y y qr



  

    
    

            f
 

0

3 2

0

(0c '

4 ,( 1)

, i ( 1) i( 1) )

x x

x x x

qq

r y y

y y



   

    

 

 
 
 
  
 

     

 

0

3

0c '

(0, 2( 1),0)4

qq

r





 

 
  

 
  

, 

where 
22( 1) 2(cosh 1) 4sinh

2



    (Cf. Theorem 2). 

(Q.E.D.) 

 

 

Conclusion 

 

 The authors propose a new idea “en bloc” which is a component of the moving charge or particle in 

the Minkowski space by the Lorentz transformation. 

This notation is very helpful for getting our ideas in shape. The following conclusions are drawn: 

(1) We can describe the some event in any coordinate system on the Minkowski space. 

(2) We clarify the relation between stream charge and current. 
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