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Abstract

In the previous papet, authors showed that the resonance number of the planets in the solar
system is 2-6 from the set of the Venus, the Earth, the Mars whose resonance number is 1, And the
resonance number of Mercury is below 0.6, because the Mercury is very close to the Sun.

In this paper, the Mercury’s behavior in the strong gravitation as the ratio of the revolution and
the rotation is 2:3 and we find the point in which the speeds of the rotation and the revolution are

same values.

1.. Preliminaries.

{(i)The equations of motion of Newton’s type.
We consider the two-body problem concerned with the Sun and the planet.
We use the polar coordinate (¢,7,8,¢).

S
t=t
x=rsinfcosg

y=rsinfsing
z=rcosd

Fig. I The spherical coordinate.

Then the planet moves on the equator of the Sun. Therefore, we put, where € is a parameter

GM
relating to the angle of rotation on the orbitand M, = — @,
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The metric is dez® =dct? —dr? - (r cosh Qdg)* +(#dQ)* and the system of equations is
d’ct M dr det

1 .+ (the direction of time),
@ df 7 drdr ( )
2
2 d— = w%w dCt) +— {( cosh {2 j¢) (r%g)g}-u (the direction of radius),
T
3) #( ~Me d°’ sinh Q ¢)(r costh¢) . (the longitude arcal velocity) ,
. r

M, dct

2 do
(4)5;(1’ coshQ %) = (= ——

inhQ@)(r2 —)-+- (the latitude areal velocity).
dr dr

For having a good discussion, we translate the above equations of Newton’s type to equations
of Kepler’s type.
(ii)The equations of motion of Kepler’s fype.

The system of equations is
Mg

(1)' def _ e’ -- (the kinetic energy),
d’ M, det d¢
(2) : e (reinh Q)= —(— ——)(tanh Q—rcosh Q-——) cosh Q{ )
= (the structure of space),
) ¢’ d(D) = (r* cosh Q%)2 ~(r? @)2 =C*... (the law of equal areas),
dr dr
@' r coshggf =Ccosh®'(=0), +* & _Csinhe
dr dr
J(smh Q— df Mg dety, .. (the internal rotation ).
dr  # dr '
All information in physics is contained in this system of equations.
Q
We put the angular velocity do = \/ (c:oshQ-c-iﬁ)2 - (Ei——)2 , the orbit speed rdﬂ and the
dr dr dr dr
1
d— 2 2 M,
dr ORI |
main equation (—) = deD)l = —-2—2— vl So ot —3

Wecall C,, C the energy constant and arcas constant respectively.

2. The meaning of ®' and ©.
Minkowski metric is
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der? =det? —dr? —(r cosh Qdg)? + (rdQ)?

Then
1 dr rcosh Qdg rdQ
=1 2 _ 2 2
dt (dct) ( det )+ dct)
)
T
Cdr 1
Tdr dr ., ,rcoshQdg, rdQ., P
Jl—(ﬁ ~( Yy
der det

On the other part, we put the speed of radial direction Y j—r(z tanh @)} and the speed of
¢ ‘def

rotation direction Vy=r coshQi—?, then Newton’s composition is
v ” (= tanh ®
~L (= tanh @) 0 ¢ )
¢ Ve s
0 + F(:tanhCD) = -£(=tanh @) j.
c
0 0 0

1
, Ccosh®d = 1

—— —p——and
V.2 v
1-(=1) JI= (22
c c
relativistic composition of two directions (new) is

- [cosh o) " [cosh®@
(sinh ©,0,0) (0, sinh @, 0)

B {cosh ®cosh®

When we use the relatively form, cosh® =

(sinh @ cosh @, cosh @sinh @, —i sinh @sinh (D)}

11
=cosh ® cosh @ '
(tanh ®, tanh @, —i tanh @ tanh @)
Therefore, the time componernt is

cosh@cosh @ = 1 < (6)

\/1—(1’;)2 -2y
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Cf. the composition of the same direction speed 1 and v,, then Newton’s composition is

l’CL(= tanh ©, ) l’cl(z tanh ©,) %ﬁ%(: tanh ®, +tanh ®, )
0 + 0 = 0
0 0 0

, cosh@, = then the

1
We use the relatively form cosh®, = —p——mw— =
S ,/1 2y
c

relativistic composition of a same direction is

“[cosh®, " [cosh®, I
(sinh ©,,0,0) (sinh ®,,0,0)

" cosh ®, cosh®, —sinh ®, sinh ©, )
(cosh @, sinh ®, +sinh &, cosh ®,,0,0)
"[cosh(®, +8,) -

) by the additional theorem
L (sinh(®, +©,),0,0)

1 -
=cosh(®, +8,) [ (tanh(®, +®,),0, 0)} '

This is a relativistic composition rule of speed.

Theorem 1.

We get the factorization of the metric as follows:

det ., %2 da,
( )—1 ( (fGOSthcr) (dt)

=1-CoPH-6 cosh @30y
det

&y = -1-(rooshr ¢)2+(rd—9)’
dr dr

(& -0
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der 5 det ) dr 2 r+dQ) 2

= — — 1 PR,
) (r cosh ngﬁ) (r cosh Qd;zﬁ) (r cosh Qd¢) * (r cosh Qd;zﬁ)

= -1 {1-

(e -G
der,, ,det., dr ,  rcoshQdd.,
- 1
(1V)( ) (rdQ) (rdQ) { T Y+
hQd
=1 Gy -y

dQ
And we get tanh®'=tanh @ therefore @' = © when the moment of inertia is zero,

(Proof)

' dr
By the metric, the energy is —= ! e i (8

4 Jl—(jct) —(rcoshQ ¢)+( )

And by the composition of speed, its time component is

dt
dr
\fl()\fl( \/1() ()()
— 1_(L)2—(rcoshﬂ-§-ﬂ)2+(_i)2' th¢ ) - LI (7)
det det dect (rcos 5)

We compare energy (5) with the time component (7).
Then we get (r ————) = ( ) (r cosh QL ot dé 2 —23% in this case the moment of inertia is zero.

And we adopt an anticlockwise rotation is positive.

aQ —ilr—-if~c:osh9.d—¢j - (B)
det  dot det
Therefore the energy formula of the metric —
r cosh ngﬁ rdQ.,
( Y+ (=)
det

. . dt
is factorized as ~— =

d
T \[{1( LA (rcosth¢)}

Moreover using the same method, we get (ii)-(iv).
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o d _d
Therefore tanh® = i = det __ de . dz on the world line.

det rcosh Q% coshQ —¢ cosh Q_¢
det dr dr
e do
And by the formula (4)’, tanh®'= de;ﬁ - drd¢ _
rtcoshQ—— coshQ—-
dr dr
We get tanh®'=tanh® .. @'= & when the moment of inertia is zero. Q.E.D.

3. The stable point of rotation and revolution.
2
r
In the orbit the value of the energy mcC, is a constant and dz = EdCD .

‘We use the law of equal areas

3)' * dd)) = (r* cosh Q) ¢) —(r? (219)2 =(C*... (the law of equal areas),
T
Then 32— NG
dr
r 2y
And (7 costh—¢)2—( : 402 L hgd¢) ( —)* —JL’Lw)
dr dz dz (r coshQ—-q)2
dr
(e costh(li—i‘?)2 (r* coshQ%)2
= - (‘""’) b= by ().
— Er_ 2 — % dcr hQ_¢m 2
{1 (dct) Hl (rcosthct) ) 1—(rcos dcr)
d¢ 2 C 2
{rcoshQ——
Then det (E)2 . (rcosh ¢) = ”° c . e (10)

1—(1"coshQ%)2 e def 1+( )
det

S
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C
N
And besides %=*%-cosh :qi ;‘rt r CC _ 1C ddt(C)'
' & o ¢ c ot re

dsinh) 1 dsinhQ  dQ 1

Then ! = ——(—)
l+sinh¢y det  coshQ  der ﬁ ,1 (C) det re

. C
Therefore, when we getsinh {2 = —
FC

.'.rsinhQ=£, coshQ=\/1+sinhQQ=J1+(£)2, rzcosh29%=£.- - (1D
¢ re of ¢

1 1
We apply the planet orbit —=—(1+ecos @), and by the (2)’ of Kepler type.
’ ‘

%
2
—q—(rsth) = —(M E)(tanhQ rcosh 2 ¢i‘)cq)sh(z(%) M = GI;J .
T C
M,
=-=k dct) (rsinh Q@ —r* cosh’ Q gi) + + « This is like Hooke’s law.
r -

(a) The revolution of the planet is stable then rsinh Q= 7? cosh? Q% = g« when the moment

det ¢

of inertia is zero, but actually there is an effect of the moment of inertia.

(b) If there is a gap in the angular momentum of rotation mrsinh ) and the angular momentum of

d mc” GMm
revolution m#? cosh? Q ¢ (— —) then the force G
gap with this equation,
In this situation we assume that the momentum of rotation is stable, i.e. msinhQ, = mc .
KO

Then we seek the point of the center # such that

P= [Fdr=- j: (:"ﬁ(_)(dcr ) (msinh Q, — mr cosh? 32347
det
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= [ EHEPE- 040 -0 by

dg.

In this point we expect that the formulacosh ), dor
C

y

hold.

rcosh Q% ctanh O
! :
Q)

ax10*? !

2x10*® Iy

o

-6x10" —4x10'° -2x10%° 2x10'°  dxI0?|

2x10"*

—4x10**

Fig. 2 The rotation and revolution.

(revolution) = tanh &2

(rotation) will

Since the short axial direction is symmetrical, therefore we calculate the integral to the long axial

ditectionin D.
M, dcz‘ mCsin @, 3 mCsin®

Therefore we solve the equation — E( ) {
Ke rc

T L T _._M:flsinqm@.
K F !

I

We use the elliptic orbit formula l = i {l+ecos®) ofthe planet,
¥ i"o
Then right side is
: , , 1.
flsm DdD = 1 f(l +ecos®)sin @dd = 1 f(sm D+ —es5in 20D
4 7 f 2

x

=l|:—cos¢)—%ecos2(b} :E.

% e "
rsin®, 2 2 ]
Therefore —— =" . .gin®, =~
A A 7T

1 1
By the way, since ——=l(1+ecos(D,), cos D, =_(I‘_0H1)'
nooF e r

Fe
Therefore we get the following equation for — by the formula (12) and (13).
n

P =0.

+(12)

*(13)
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{é( —py? +(2’"‘ ~1 e

0

4. Examples 7
Example 1. The calculation using only eccentricity (¢ = 0.2056) in Mercury.

The eccentricity is ¢ = 0.2056 , then—- = 0.852759 .
n

Then we get the center point, i.e. in this point, the rotation and evolution speeds coincide is

7 =4.729589316763557x10"° m by r, =5.546221882829519x10" m

dg.

In this point, the rotation angular speed and the revolution angular speed cosh® Q, —— is

— =1.2128x107 rad-sec™ by the area velocity € =2.7129x10" m? -sec™

And the angle from perihelion is @, =0.573866 rad by the B l1+ecos®,.
4

This means that by the area from perihelion is

S = % f r2dd = 6.187177923346939x10°° m?, it takes %/ 24/3600 =5.27924 days

 after perihelion.

2 27t
And the cycle of the rotation is 7 (= —”)=T=2%:;: ddd
1)

=59.9454 days, but by

2
Fe

" ‘measurement, T, =58.6462 days because this result is not considered the "some" stable

condition of the energy.

Example 2. The calculation using the condition {(e=0.2056) of Example 1 and the

additional condition of the ratio (#:m =2 :3) of the revolution and the rotation.
The ratio of the revolution and the rotation is »:m =2;3and the cycle of the revolution is
zrky _ 2zn R
S Cc

T- o

¥ .
where R, = 7 — is a length of the long radius and r, = is a

—e 1_e2

| Oy

27 2z _27n
length of the short radius and the cycle of the rotationis 7, =— = —CE = 73
"
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m T 3 27rt . 2#7rR 2_ _
Then —=—=> 3250 =220 307 =0nR = ———
T 2 c c (1-¢)?

Therefore (1)2 = 2 < s (15)

AN (VO

.k 2

EEREN e

=(.843378.

By 7, =5.546221882829519%x10'° m,  =4.67756x10" m and

<
n2

=1.23992x107° rad-sec™ by the area velocity € =2.7129x10" m®-sec™.

.
And the angle from perihelion is @, = 0.443523 rad bythe L=1+ecos®,.
1A

This means that by the area from perihelion is

S = % f PRAD = 4.7446407523117485%x10% m?,

it takes %/24/3600=4.04844 days after perihelion,

n 2
Example 3. The calculation using only the harmonic ratio —=§ which is the energy
m

"level” of the revolution and the rotation of the Example 2 without the effects of the Venus

beyond. In this case the eccentricity value ¢ is not the usnal one in the new orbit of the

Mercury.

In the point % that the speeds of revolution and rotation are equal (7, cosh (2, % =c¢tanh €),)

1 1
fills the equation (14) in the orbit —=—(1+ecos®).
Foor

2 : . ;
And from the ratio of the revolution and the rotation 3 the same point # fills the equation

(15).
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o 2
(T -1 5 P
Therefore from equations (14), (15), we get ————=¢? =1—(= (i)i)s
' 1— 2h. KRN A
(=)
7,

08462064 5. e=0215723.

a

This means that when the influence of external force does not come, the eccentricity of the
Mercury orbitis e =0.215723,

5, Conclusion
In the Mercury, the eccentricity e =0.2056 has a close relation to the gravity force.
o2, .
And the harmonic ratio — = E is the parameter when getting a local minimal value like the
m
energy. -

* Authors think this event may not be limited to only Mercury.
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