
1

プランク定数の角運動量をもつ振動

The Oscillation with Planck Constant

Yoshio TAKEMOTO**, Seishu SHIMAMOTO***

Department of Mechanical and Electrical Engineering, School of Engineering,

Nippon Bunri University

Abstract

We have three questions. The first question is that where the energy of light wave for example

which radiated from the atomic in orbit transfer. The second question is that how mount the

amplitude of the light wave.

We give the Planck’s hypotheses E h  the another meaning. And the third question that why

the Bohr radius is determined this value.

1. Preliminaries

(i) A harmonic oscillator system is F kx  ,
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(ii) The energy function of the "relativistic" harmonic oscillator system

We put the energy function
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2. Some tools.

(i) Planck’s hypotheses

2 2 2 [/ ][ / ] [ / ] skgm s kgm s
E h   ・ ・ 2

34
[ / ]

6.62607 10
kgm s
h   energy should be proportional to the

frequency ν

(ii) The surrounding frequency energy
The electronic movement is mostly determined by the proton electric charge of a central nucleus.

Then in the circle orbit the 4-dimensional force ( , , , )t x y zf f f f on the electron is
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Therefore the 4-dimensional force ( , , , )t x y zf f f f on the electron is 0 0tf e  
.
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Fig. 1. Schematic diagram of the electric movement.
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where  is the circumferential length, ( )yv v is the surrounding speed , is the surrounding

frequency, . And at the Bohr radius 1( )r r ,

.

(iii) Bohr radius

We put 1r the Bohr radius. By the balance in the orbit,
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And by the Planck constant 1 12 eh m rv (2)
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(iv) The meanings of
2

0
0 2ce

k eR
m



a. The relativistic angular moment.

By the balance the in the n-orbit,
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And by the “relativistic” Planck constant
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Moreover the formula of nr is indicated the limited radius in a circle orbit.

That is to say, when the case
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b. The energy function.

We differentiate the Energy function .
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Therefore, the minimum point is
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c. The limit of the speed circular moment.
The "main equation" in the circle orbit is as follows;
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Fig. 2. The energy function.
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This relation (6) is the same of the balance equation of the centrifugal force and the attractive

force. Moreover, we solve the equation (5). Then,
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Therefore, the minimum of this radius and the maximum velocity are as follows;
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3. The energy of oscillation

(i) Planck constant (The angular moment of oscillation)
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Fig. 3. The energy of light at the transfer (classic).
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The Planck’s hypotheses 2 2 2 [/ ][ / ] [ / ] skgm s kgm s
E h   means that energy should be proportional to

the frequency ν and the proportionality constant is 2
34

[ / ]
6.62607 10

kgm s
h   . But we don’t know

the beginning and the end of the wave.

 is a frequent of the light. And we define s only the number of the wave for one second.

Then we defined the energy
2 2[ / ]

s s
kgm s

Eh



 which is the angular momentum for one second.

By the Planck’s hypotheses, for any frequency  the energy of angular motion

2 2[ / ]
s s
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 is the same value and minimum energy.

We considered the harmonic oscillator which frequent is  and its energy is 2 2[ / ]s kgm s
h .
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22 0.0381416s

m s
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    is the speed.

(ii) Difference energy in the transfer orbit

The orbit of electron transfer from the parabolic(or elliptic) orbit to the circle orbit with some

opportunity.
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≒ , At the same speed point [ ]m nr  .

When the orbit is the parabolic, m   , [ ] 2 nn rr 

and the speed of electron at the perihelion point is nv .

Then we get the frequency of the electron as follows;
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Fig. 4. The specific elliptic orbit.
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We considered the harmonic oscillator which frequent is n and its energy is 2 2[ / ]s kgm s
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(iii) For generally, “any” radius r and 2
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c
vr R (The balance in the circle).
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Fig. 6. The one wave (the light quantum).
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Therefore we get 1 12h mrv . and this is the light quantum for “one action one wave”.

Examples 2 (The impact acceleration and the acceleration quantity)

The orbit of electron transfer from the parabolic (or elliptic) orbit to the circle

orbit with some opportunity.
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And we get the frequency of the electron at the perihelion point as follows;
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Therefore the acceleration quantity which is impact acceleration gives frequency n .

4. Conclusion

It is that Planck is saying implicitly in Planck's hypothesis as “Any frequency gets the energy of

angular motion with the same minimum value (Planck's constant)”.
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Fig. 8. The velocity and the acceleration on circle.
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