The Planet and The Electron

Yoshio TAKEMOTO＊＊，Seishu SHIMAMOTO＊＊＊

Department of Mechanical and Electrical Engineering，School of Engineering，
Nippon Bunri University

Abstract

In the previous paper，we reported that solve the orbit equation of an electron and find two type resonations i．e．，（i）Bohr and（ii）a flower orbit resonations．In this paper，we study the planet in gravitation by solving the orbit equation which change the $R_{0}=\frac{k_{0} e^{2}}{m c^{2}}$（in the electromagnetic）to the $M_{G}=\frac{G M}{\mathrm{c}^{2}}$（in the gravity）．We calculated Mercury orbit and perihelion and bending of light by solving the orbit equation．This result is corresponding to the relativity theory．

1．Preliminaries

1．1．The similar to the Bohr radius

For the any planet m_{p} is a mass，v_{p} is a speed and r_{p} is a distance from the sun．
When the planet orbit is circle，by the balance in the orbit，

$$
\begin{align*}
& \frac{m_{p} v_{p}{ }^{2}}{r_{p}}(\text { the centrifubal force })=\frac{G M m_{p}}{r_{p}{ }^{2}} \text { (the central force) }\left(=\frac{M_{G} m_{p} \mathrm{c}^{2}}{r_{p}{ }^{2}}\right) \\
& \therefore \quad r_{p} v_{p}^{2}=G M \quad \therefore v_{p}=\sqrt{\frac{G M}{r_{p}}}=\sqrt{\frac{M_{G} \mathrm{c}^{2}}{r_{p}}} . \tag{1}\\
& M_{G}=\frac{G M}{\mathrm{c}^{2}}=\frac{6.6743 \times 10^{-11} \times 1.9885 \times 10^{30}}{299792458^{2}} \doteqdot 1476.69197 .
\end{align*}
$$

And by the planet moment（correspond to Planck constant in the electromagnetic），
$h=2 \pi m_{p} r_{p} v_{p}=2 \pi m_{p} \sqrt{r_{p} G M}\left(=2 \pi m_{p} \mathrm{c} \sqrt{r_{p} M_{G}}\right)$.
Therefore，the planet radius（correspond to Bohr radius in the electromagnetic）is

$$
r_{p}=\frac{h^{2}}{(2 \pi)^{2} M_{G}\left(m_{p} \mathrm{c}\right)^{2}} \simeq \frac{1}{1476.69197}\left(\frac{h}{2 \pi m_{p} \mathrm{c}}\right)^{2}, \frac{\mathrm{c}^{2}}{G M}=\frac{1}{M_{G}} \doteqdot \frac{1}{1476.69197} \doteqdot 0.000677189\left[\frac{1}{\mathrm{~m}}\right] .
$$

1.2. The relativistic angular moment

In "the relativistic" case, we use the relativistic angular moment,
$h_{1}=2 \pi m_{p} r_{p} \frac{v_{p}}{\sqrt{1-\left(\frac{v_{p}}{\mathrm{c}}\right)^{2}}}$ and $\hbar_{1}=m_{p} r_{p} \frac{v_{p}}{\sqrt{1-\left(\frac{v_{p}}{\mathrm{c}}\right)^{2}}}=m_{p} r_{p} u_{p}$ as the planet moment.
When n-multiplication of \hbar_{1}. (i) $m_{p} r_{n} u_{n}{ }^{2}=m_{p} r_{n}\left(\frac{v_{n}}{\sqrt{1-\left(\frac{v_{n}}{\mathrm{c}}\right)^{2}}}\right)^{2}{ }_{\text {balance }}^{=} \frac{G M}{\mathrm{c}^{2}} m_{p}\left(\frac{\mathrm{dc} t}{\mathrm{~d} \tau}\right)^{2}=\frac{M_{G} m_{p} \mathrm{c}^{2}}{\sqrt{1-\left(\frac{v_{n}}{\mathrm{c}}\right)^{2}}}$,

$$
r_{n}=n^{2} r_{p}, \quad v_{n}=\frac{v_{p}}{n}, u_{n}=\frac{v_{n}}{\sqrt{1-\left(\frac{v_{n}}{\mathrm{c}}\right)^{2}}} . \text { And (ii) } \hbar_{n}=m_{p} r_{n} \frac{v_{n}}{\sqrt{1-\left(\frac{v_{n}}{\mathrm{c}}\right)^{2}}} \text { for } n=1,2,3, \cdots \text {. }
$$

Then (i) ${ }^{\prime}\left(\frac{v_{n}}{\mathrm{c}}\right)^{2}=\frac{M_{G}}{r_{n}}$ and (ii), $\hbar_{n}=m_{p} \mathrm{c} r_{n} \frac{\frac{v_{n}}{\mathrm{c}}}{\sqrt{1-\left(\frac{v_{n}}{\mathrm{c}}\right)^{2}}}$.
Therefore $\left(m_{p} \mathrm{c}_{n}\right)^{2} \frac{M_{G}}{r_{n}}=\hbar_{n}{ }^{2}\left(1-\frac{M_{G}}{r_{n}}\right)$.
$\therefore\left(m_{p} \mathrm{c}\right)^{2} M_{G} r_{n}^{2}-\hbar_{n}{ }^{2} r_{n}+\hbar_{n}{ }^{2} M_{G}=0, \hbar_{n}=\frac{h_{n}}{2 \pi}$.
We solve the equation (4), and then we get the orbital radius.

$$
\begin{equation*}
r_{n}=\frac{\hbar_{n}{ }^{2} \pm \sqrt{\left(\hbar_{n}{ }^{2}\right)^{2}-4\left(m_{p} \mathrm{c}\right)^{2} M_{G} \hbar_{n}{ }^{2} M_{G}}}{2\left(m_{p} \mathrm{c}\right)^{2} M_{G}}=\frac{\hbar_{n}{ }^{2}\left(1+\sqrt{1-\left(\frac{2 M_{G} m_{p} \mathrm{c}}{\hbar_{n}}\right)^{2}}\right)}{2\left(m_{p} \mathrm{c}\right)^{2} M_{G}} . \tag{5}
\end{equation*}
$$

Especially $n=1$, we get

$$
\left.\left.r_{1}\left(=r_{p}\right)=\frac{\hbar_{1}^{2}\left(1+\sqrt{1-\left(\frac{2 M_{G} m_{p} \mathrm{c}}{}\right)^{2}}\right)}{2\left(m_{p} \mathrm{c}\right)^{2} M_{G}}\right) \fallingdotseq \frac{\left(\frac{\hbar_{1}}{m_{p} \mathrm{c}}\right)^{2}}{M_{G}}-M_{G} \fallingdotseq \frac{r_{p}^{2} v_{p}{ }^{2}}{G M}-M_{G}\right), 2 M_{G} \mathrm{c}=8.854022308 \times 10^{11} .
$$

Moreover the formula (5) of r_{n} valid for $n<1$ and indicated the limited radius in a circle orbit.

That is to say, when the case $\left(\frac{2 M_{G} m_{p} \mathrm{c}}{\hbar_{n}}\right)^{2}=1$, then
$r_{n_{s}}=\frac{\left(2 M_{G} m_{p} \mathrm{c}\right)^{2}}{2\left(m_{p} \mathrm{c}\right)^{2} M_{G}}=2 M_{G} \doteqdot 2953.38394\left(M_{G} \doteqdot 1476.69197\right)$,
$\frac{M_{G}}{r_{p}}\left(=\left(\frac{G M}{\hbar_{p} \mathrm{c}}\right)^{2}\right)=\left(\frac{v_{p}}{\mathrm{c}}\right)^{2}$ is "the fine structure?". And this point is minimal point of the E-function $E_{0}(r)\left(=\frac{C_{0}}{\mathrm{c}}\right)=\frac{1}{\sqrt{1-\frac{M_{G}}{r}}} \mathrm{e}^{-\frac{M_{G}}{r}}$.

And, Fig. 1 shows the E-function.

Fig. 1. The E-function.

And, by $\hbar_{n_{s}}=m_{p} n_{s}^{2} r_{p} \frac{\frac{v_{p}}{n_{s}}}{\sqrt{1-\left(\frac{v_{p}}{c}\right)^{2}}}=2 M_{G} m_{p} \mathrm{c}$
$\therefore\left(n_{s} r_{p} v_{p}\right)^{2}=\left(2 M_{G}\right)^{2}\left(\mathrm{c}^{2}-\left(\frac{v_{p}}{n_{s}}\right)^{2}\right)$
$\therefore n_{s}{ }^{4} r_{p}^{2} v_{p}^{2}-n_{s}^{2}\left(2 M_{G}\right)^{2} c^{2}+\left(2 M_{G} v_{p}\right)^{2}=0$
$\therefore n_{s}{ }^{2}=\frac{2 M_{G}{ }^{2} \mathrm{c}^{2} \pm \sqrt{\left(2 M_{G}{ }^{2} \mathrm{c}^{2}\right)^{2}-r_{p}{ }^{2} v_{p}{ }^{2}\left(2 M_{G} v_{p}\right)^{2}}}{r_{p}{ }^{2} v_{p}{ }^{2}}$

$$
=\frac{2\left(M_{G} \mathrm{c}^{2}\left(1 \pm \sqrt{1-\frac{r_{p}{ }^{2} v_{p}{ }^{4}}{\left(M_{G} \mathrm{c}^{2}\right)^{2}}}\right)\right.}{r_{p}{ }^{2} v_{p}{ }^{2}}=\frac{2\left(M_{G} \mathrm{c}\right)^{2}}{r_{p}{ }^{2} v_{p}{ }^{2}} \text { by }(\mathrm{i}) \cdot\left(\frac{v_{n}}{\mathrm{c}}\right)^{2}=\frac{M_{G}}{r_{n}} \text {. }
$$

$\therefore n_{s} r_{p} v_{p}=\sqrt{2} M_{G} \mathrm{c}$ and $r_{p} v_{p}{ }^{2}=r_{n} v_{n}{ }^{2}=M_{G} \mathrm{c}^{2}$.

In this point, the speed is $v_{n_{s}}=\sqrt{\frac{\mathrm{GM}}{r_{n_{s}}}}=\sqrt{\frac{\mathrm{M}_{G} \mathrm{c}^{2}}{r_{n_{s}}}}=\sqrt{\frac{\mathrm{c}^{2}}{2}}=\frac{\mathrm{c}}{\sqrt{2}}$
for any planets (from Mercury to Pluto).

1.3. The limit of the speed in circular moment

The "orbit equation" in the circle orbit is as follows[4,5]:
(i) $\left(\frac{\mathrm{d} \frac{1}{r}}{\mathrm{~d} \Phi}\right)^{2}=-\frac{\mathrm{c}^{2}}{C^{2}}+\frac{C_{0}{ }^{2}}{C^{2}} \mathrm{e}^{\frac{2 M_{G}}{r}}-\frac{1}{r^{2}} \equiv 0 \quad \therefore \frac{1}{r^{2}}=-\frac{\mathrm{c}^{2}}{C^{2}}+\frac{C_{0}{ }^{2}}{C^{2}} \mathrm{e}^{\frac{2 M_{G}}{r}}$ and
(ii) $\frac{\mathrm{d}^{2} \frac{1}{r}}{\mathrm{~d} \Phi^{2}}=M_{G} \frac{C_{0}{ }^{2}}{C^{2}} \mathrm{e}^{\frac{2 M_{G}}{r}}-\frac{1}{r} \equiv 0 \quad \therefore \frac{1}{r}=M_{G} \frac{C_{0}{ }^{2}}{C^{2}} \mathrm{e}^{\frac{2 M_{G}}{r}}$.

Therefore $\frac{1}{r^{2}}=-\frac{\mathrm{c}^{2}}{C^{2}}+\frac{1}{r M_{G}}, \frac{\mathrm{c}^{2}}{C^{2}} r^{2}-\frac{1}{M_{G}} r+1=0$.
$\frac{\mathrm{c}^{2}}{\left(r \frac{v}{\sqrt{1-\left(\frac{v}{\mathrm{c}}\right)^{2}}}\right)^{2}} r^{2}-\frac{1}{M_{G}} r+1=0,\left(\frac{v}{\mathrm{c}}\right)^{2}=\frac{M_{G}}{r}$.

Moreover, we solve the equation (7). Then,
$r=\frac{\frac{1}{M_{G}} \pm \sqrt{\frac{1}{M_{G}{ }^{2}}-4 \frac{\mathrm{c}^{2}}{C^{2}}}}{2 \frac{\mathrm{c}^{2}}{C^{2}}}, 4 \frac{\mathrm{c}^{2}}{C^{2}}<\frac{1}{M_{G}{ }^{2}}$ (from the discriminant).
Therefore, the minimum of this radius and the maximum velocity are as follows:

When, $\frac{\mathrm{c}}{C}\left(=\frac{\mathrm{c}}{r \frac{v}{\sqrt{(v)^{2}}}}\right)=\frac{1}{2 M_{G}}$.
$\sqrt[r]{1-\left(\frac{v}{c}\right)^{2}}$
And then $r=\frac{\frac{1}{M_{G}}}{2 \frac{\mathrm{c}^{2}}{C^{2}}}=\frac{\frac{1}{M_{G}}}{2\left(\frac{1}{2 M_{G}}\right)^{2}}=2 M_{G}$ and $v=\frac{\mathrm{c}}{\sqrt{2}}$.

We calculate the Planet values $\left\{r_{p} u_{p}\right\}$ of Venus, Earth and Mars as follows:

1) The orbital speed of Venus is $u_{p}=3.5020 \times 10_{[\mathrm{m} / \mathrm{s}]}^{4}$ and the Planet radius is $r_{p}=1.08204 \times 10_{[\mathrm{m}]}^{11}$, then the value of moment is $r_{p} u_{p}=3.78930 \times 10^{15}{ }_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}$.
2) The orbital speed of Earth is $u_{p}=2.9783 \times 10_{[\mathrm{m} / \mathrm{s}]}^{4}$ and the planet radius is $r_{p}=1.49598 \times 10^{11}{ }_{[m]}$, then the value of moment is $r_{p} u_{p}=4.45548 \times 10^{15}{ }_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}$.
3) The orbital speed of Mars is $u_{p}=2.4128 \times 10_{[\mathrm{m} / \mathrm{s}]}^{4}$ and the planet radius is $r_{p}=2.27942 \times 10_{[m]}^{11}$, then the value of moment is $r_{p} u_{p}=5.49978 \times 10_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}^{15}$.

By 1), 2) and 3) in order to take out a better point, although there is no basis in particular. But we take the value $($ mean $)=\frac{\frac{\text { Venus }+ \text { Earth }}{2}+\text { Mars }}{2}=\underline{\underline{4.81109}} \times 10_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}^{15}$ (no reason).

This formula is no reason, but this is near the value $4.75 \times 10^{15}{ }_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}$ by a method of least squares to resonance among Mercury to Pluto. Table 1 shows ratio of the resonance (or the moment) point for the planet.

Table 1 Ratio of the resonance (or the moment) point for the planet.

	Mercury	$\left(\operatorname{mean} r_{1} \cdot u_{1}\right)$	Jupiter	Saturn	Uranus	Neptune	Pluto
Orbital radius $r_{p[m]}$	5.79×10^{10}	$\left(1.74 \times 10^{11}\right)$	7.78×10^{11}	1.43×10^{12}	2.88×10^{12}	4.50×10^{12}	5.92×10^{12}
Orbital speed $u_{p[m / s]}$	4.79×10^{4}	$\left(2.76 \times 10^{4}\right)$	1.31×10^{4}	9.64×10^{3}	6.79×10^{3}	5.43×10^{3}	4.74×10^{3}
Moment $r_{p} \cdot u_{p}$	2.77×10^{15}	$\underline{4.81} \times 10^{15}$	1.02×10^{16}	1.38×10^{16}	1.96×10^{16}	2.44×10^{16}	2.81×10^{16}
Ratio of Moment	0.58	1	2.11	2.86	4.06	5.08	5.82

The value(mean) of the set (Venus, Earth, Mars) is 1, then the value of Jupiter, Saturn, Uranus, Neptune ,Pluto is about 2, 3, 4, 5, 6 respectively.

And the mercury is very closed to Sun, therefore its orbit is elliptic and its rotation is affected in revolution. And the planet does not jump easily by the excitation like the electron. Therefore, the other planet occupied its position.

2. The Orbit Equation

The metric is $\mathrm{d} s^{2}=-\mathrm{dc} t^{2}+\mathrm{d} r^{2}+r^{2}\left(\sin ^{2} \theta \mathrm{~d} \varphi^{2}+d \theta^{2}\right)$.

Fig. 2 shows the sphere type. We consider the two-body problem concerned with the nuclear and the electron as in one hydrogen atom. It is assumed that the electron moves on fixed surface. Therefore, we put $\theta=\frac{\pi}{2}-\mathrm{i} \Omega . \Omega$ is a parameter that relates to the angle of rotation on the orbit.

Then the metric is

$$
\begin{equation*}
\mathrm{d} s^{2}\left(=-\mathrm{dc} \tau^{2}\right)=-\mathrm{dc} t^{2}+\mathrm{d} r^{2}+r^{2}\left(\cosh ^{2} \Omega \mathrm{~d} \varphi^{2}-d \Omega^{2}\right)(<0) \tag{8}
\end{equation*}
$$

and the polar coordinate is (t, r, Ω, φ)

We change the situation of the electron to the planet.
Then we get the equation of Kepler's type.

$$
\left\{\begin{array}{l}
m_{0} \mathrm{c} \frac{\mathrm{dc} t}{\mathrm{~d} \tau}=m_{0} \mathrm{c} C_{0} \mathrm{e}^{\frac{M_{G}}{r}} \cdots(\text { the conservation of energy) } \\
\frac{\mathrm{d}^{2}}{\mathrm{~d} \tau^{2}}(r \sinh \Omega)=-\left(\frac{M_{G}}{r^{2}} \frac{\mathrm{dc} t}{\mathrm{~d} \tau}\right)\left(\tanh \Omega-r \cosh \Omega \frac{\mathrm{~d} \varphi}{\mathrm{dc} t}\right) \cosh \Omega\left(\frac{\mathrm{dc} t}{\mathrm{~d} \tau}\right) \\
\cdots \text { (the structure of space) } \\
r^{2}\left\{\left(r \cosh \Omega \frac{\mathrm{~d} \varphi}{\mathrm{~d} \tau}\right)^{2}-\left(r \frac{\mathrm{~d} \Omega}{\mathrm{~d} \tau}\right)^{2}\right\}=C^{2} \cdots(\text { the law of equal areas) } \\
r^{2} \cosh \Omega \frac{\mathrm{~d} \varphi}{\mathrm{~d} \tau}=C \cosh \Theta(\geqq 0), \quad r \frac{d \Omega}{d \tau}=-C \sinh \Theta \\
\Theta=-\int\left(\frac{M_{G}}{r^{2}} \frac{\mathrm{dc} t}{\mathrm{~d} \tau}-\sinh \Omega \frac{\mathrm{d} \varphi}{\mathrm{~d} \tau}\right) \mathrm{d} \tau \cdots \cdots \text { (the internal rotation) }
\end{array}\right.
$$

Fig. 3 shows the anti-de sitter type.
$\left\{\begin{array}{l}\mathrm{c} t=\mathrm{c} t \\ x=r \cosh \Omega \cos \varphi \\ y=r \cosh \Omega \sin \varphi \\ i z=\mathrm{i} r \sinh \Omega\end{array}\right.$.

Fig. 2. The sphere type.

Fig. 3. The anti-de sitter type.

It is proposed that the planet have gravity for the sun and Earth. Where C_{0} is the speed constant for the energy function and C is the area speed constant.

The main equation is

$$
\begin{align*}
\left(\frac{\mathrm{d} r}{\mathrm{dc} \tau}\right)^{2} & =\left(\frac{\mathrm{dc} t}{\mathrm{dc} \tau}\right)^{2}-r^{2}\left(\left(\cosh \Omega \frac{\mathrm{~d} \varphi}{\mathrm{dc} \tau}\right)^{2}-\left(\frac{\mathrm{d} \Omega}{\mathrm{dc} \tau}\right)^{2}\right)-1 \\
& =\left(\frac{C_{0}}{\mathrm{c}} \mathrm{e}^{\frac{M_{G}}{r}}\right)^{2}-\left(\frac{C}{\mathrm{cr}}\right)^{2}-1, \quad M_{G}=\frac{G M}{\mathrm{c}^{2}}=1476.69197[\mathrm{~m}] \tag{9}
\end{align*}
$$

3. The relativistic Mercury orbit

The information of Mercury is $r_{1}=4.6001272 \times 10^{10} \mathrm{~m}$, aphelion is $r_{2}=6.9817079 \times 10^{10} \mathrm{~m}$ and eccentricity is $\boldsymbol{e}=0.20563069$.

Therefore, $\frac{1}{r}=\frac{1}{r_{0}}\left(1+\boldsymbol{e} \cos \left(n_{f} \theta\right)\right) \therefore \frac{1}{r_{1}}=\frac{1+\boldsymbol{e}}{r_{0}}, \frac{1}{r_{2}}=\frac{1-\boldsymbol{e}}{r_{0}} \therefore \frac{1}{r_{1}}+\frac{1}{r_{2}}=\frac{2}{r_{0}}, \frac{1}{r_{1}}-\frac{1}{r_{2}}=\frac{2 \boldsymbol{e}}{r_{0}}$.
Then $r_{0}=5.5460545 \times 10^{10} \mathrm{~m}$ which is the balanced point of force.
Therefore $\quad r=\frac{r_{0}}{1+\boldsymbol{e} \cos \left(n_{f} \theta\right)}=\frac{5.5460545 \times 10^{10}}{1+0.20563051 \cos \left(n_{f} \theta\right)} \quad, \quad n_{f} \quad$ is very close to 1.
By the value $r_{1}=4.6001272 \times 10^{10} \mathrm{~m}$ and $r_{2}=6.9817079 \times 10^{10} \mathrm{~m}$,
the solution of $\frac{C^{2}}{r_{1}^{2}}-C_{0}{ }^{2} \mathrm{e}^{2 \frac{M_{G}}{r_{1}}}+\mathrm{c}^{2}=0$ and $\frac{C^{2}}{r_{2}^{2}}-C_{0} \mathrm{e}^{2 \frac{\underline{M}_{G}}{r_{2}}}+\mathrm{c}^{2}=0$ is

$$
C=2.7130495792197815 \times 10_{[\mathrm{m} / \mathrm{s}]}^{15} \text { and } C_{0}=2.997924541776255 \times 10_{[\mathrm{m} / \mathrm{s}]}^{8} .
$$

3.1. The solution of main equation

We deform the main equation, we get the orbit equation for $\frac{1}{r}$ is

$$
\left(\frac{\mathrm{d} \frac{1}{r}}{\mathrm{e}^{-\frac{M_{G}}{r}} \mathrm{~d} \Phi}\right)^{2}=\left(\frac{\mathrm{d} r}{r^{2} \mathrm{e}^{-\frac{M_{G}}{r}} \mathrm{~d} \Phi}\right)^{2}=\left(\frac{C_{0}^{2}}{C^{2}} \mathrm{e}^{\frac{2 M_{G}}{r}}-\frac{1}{r^{2}}-\frac{\mathrm{c}^{2}}{C^{2}}\right) \mathrm{e}^{\frac{2 M_{G}}{r}}, \mathrm{~d} \theta=\mathrm{e}^{-\frac{M_{G}}{r}} \mathrm{~d} \Phi .
$$

And the orbit equation for r is

$$
\begin{align*}
\left(\frac{\mathrm{d} r}{\mathrm{~d} \theta}\right)^{2} & =\left(\frac{\mathrm{d} r}{\underline{\underline{\mathrm{e}^{-\frac{M_{G}}{r}} \mathrm{~d} \Phi}}}\right)^{2}=r^{2}\left(-1+r^{2} \frac{C_{0}^{2}}{C^{2}} \mathrm{e}^{\frac{2 M_{G}}{r}}-r^{2} \frac{\mathrm{c}^{2}}{C^{2}}\right) \mathrm{e}^{2 \frac{M_{G}}{r}}, \mathrm{~d} \theta=\underline{\underline{-\frac{M_{G}}{r}}} \mathrm{~d} \Phi \\
& \fallingdotseq r^{2}\left(-1+r^{2}\left(\frac{C_{0}}{C}\left(1+\frac{M_{G}}{r}\right)\right)^{2}-r^{2}\left(\frac{\mathrm{c}}{C}\right)^{2}\right)\left(1+\frac{M_{G}}{r}\right)^{2} \tag{10}\\
& =\left(1+M_{G}{ }^{2}\left(\frac{\mathrm{c}}{C}\right)^{2}\right)\left(r+M_{G}\right)^{2}-2 M_{G}\left(\frac{\mathrm{c}}{C}\right)^{2}\left(r+M_{G}\right)^{3}-\left(\frac{C_{0}{ }^{2}-\mathrm{c}^{2}}{C^{2}}\right)\left(r+M_{G}\right)^{4} .
\end{align*}
$$

We solve this equation.
$r=-1476.6919360418137\left(\fallingdotseq M_{G}\right)+\frac{5.546054757462805 \times 10^{10}}{1+\underline{0.20563060089637278 \sin (1.0000000133129952 \theta)}}$.
This solution is expressed by $\sin \theta$ not by the $\cos \theta$. And this orbit is not elliptic and the perihelion is delay.

And this general formula, $r=-M_{G}+\frac{x M_{G}}{1+\boldsymbol{e} \sin \left(n_{f} \theta\right)}$. Therefore, we get the differential equation.

$$
r^{\prime}[\theta]^{2}=n_{f}^{2}\left(r+M_{G}\right)^{2}-2 \frac{n_{f}^{2}}{x M_{G}}\left(r+M_{G}\right)^{3}-\frac{\left(e^{2}-1\right) n_{f}^{2}}{\left(x M_{G}\right)^{2}}\left(r+M_{G}\right)^{4} .
$$

We compared this differential equation and the equation (10).
We get the index (a) $x=\frac{C^{2}}{\mathrm{c}^{2} M_{G}{ }^{2}}+1$, (b) $n_{f}=\sqrt{\frac{x}{x-1}}$, (c) $\boldsymbol{e}=\sqrt{x\left(\frac{C_{0}{ }^{2}}{\mathrm{c}^{2}}-1\right)+1}$.
The index (b) $n_{f}=\sqrt{\frac{x}{x-1}}$ means that when orbital radius is near the center, gravity (the tensely) will be strong more and be dragged to its tensely hard more. Therefore, a perihelion point in an orbit will show early, and a pole is shifting to the back consequently.

3.2. The elliptic orbit contained the main equation

We deform the main equation to the elliptic differential equation, then we get

$$
\begin{aligned}
& \left(\frac{\mathrm{d} \frac{1}{r}}{\mathrm{e}^{-\frac{M_{G}}{r}} d \Phi}\right)^{2}=\left(-\frac{c^{2}}{C^{2}}+\frac{C_{0}{ }^{2}}{C^{2}}{ }^{22^{\frac{u_{C}}{r}}}-\frac{1}{r^{2}}\right) \mathrm{e}^{2 \frac{M_{C}}{r}} \\
& =\left(-\frac{\mathrm{c}^{2}}{C^{2}}+\frac{C_{0}{ }^{2}}{C^{2}}\left(1+2 \frac{M_{G}}{r}+2 \frac{M_{G}{ }^{2}}{r^{2}}+\cdots\right)-\frac{1}{r^{2}}\right)\left(1+2 \frac{M_{G}}{r}+2 \frac{M_{G}{ }^{2}}{r^{2}}+\cdots\right) \\
& =\frac{C_{0}{ }^{2}-\mathrm{c}^{2}}{C^{2}}+M_{G}\left(\frac{4 C_{0}{ }^{2}-2 \mathrm{c}^{2}}{C^{2}}\right) \frac{1}{r}-\left(1-M_{G}{ }^{2} \frac{8 C_{0}{ }^{2}-2 \mathrm{c}^{2}}{C^{2}}\right) \frac{1}{r^{2}}+\cdots .
\end{aligned}
$$

Then the elliptic orbit equation for r is

$$
\begin{equation*}
\frac{\mathrm{d} r}{\mathrm{~d} \theta}=\frac{\mathrm{d} r}{\mathrm{e}^{-\frac{M_{G}}{r}} \mathrm{~d} \Phi}=-r \sqrt{\frac{C_{0}^{2}-\mathrm{c}^{2}}{C^{2}} r^{2}+M_{G}\left(\frac{4 C_{0}^{2}-2 \mathrm{c}^{2}}{C^{2}}\right) r-\left(1-M_{G}{ }^{2} \frac{8 C_{0}^{2}-2 \mathrm{c}^{2}}{C^{2}}\right)} \tag{11}
\end{equation*}
$$

Then the solution is

$$
r=\frac{5.5460540066287445 \times 10^{10}}{1+\underline{\underline{0.2056307973976857 \sin (0.999999920122028 \theta)}} .}
$$

This orbit is elliptic and the perihelion is advance. And this value is

$$
360_{[\text {[des] }]} \times 60^{2}\left(\frac{1}{0.999999920122028}-1\right) \times 415_{(\text {time })}=42.96157181_{[s]} .
$$

Where $0.999999920122028 \theta=2 \pi, \quad \theta=\frac{2 \pi}{0.999999920122028}{ }_{\text {[rad] }}$ is one cycle.

3.3. The perihelion shift

We have the next question. Why does Mercurial advance of perihelion move ahead? Because the area between perihelions to next perihelion of two orbit is equal. And then the time interval is the same. When we get the next relation:

$$
\int_{0}^{2 \pi / x_{f}}\left(\frac{5.5460540066287445 \times 10^{10}}{1+\underline{\underline{0.205630}}}\right)^{2} \mathrm{~d} \theta
$$

$$
=\int_{0}^{2 \pi / 1.00000000133129952}\left(-1476.6919360418137+\frac{\underline{5.546054757462805 \times 10^{10}}}{1+\underline{\underline{0.2056306}} 0089637278 \sin (1.0000000133129952 \theta)}\right)^{2} \mathrm{~d} \theta
$$

This means that the polar-to-polar time interval is the same value. And under the setting which is an elliptic, the location of the pole will slip, see and advance towards the front.

4. The vending of the light

We use the radius of the sun $R_{\odot}=6.955 \times 10^{8} m$ as the perihelion r_{1} of light.
And we take the speed v_{1} very close to the light speed. Then the area speed constant C and the speed constant for energy function C_{0} diverge to infinity.

Where $\left(r \frac{\mathrm{~d} \Phi}{\mathrm{~d} \tau}=\right) \frac{v_{1}}{\sqrt{1-\left(\frac{v_{1}}{\mathrm{c}}\right)^{2}}}=\frac{C}{r_{1}} \quad$ and $\left(\frac{\mathrm{dc} t}{\mathrm{~d} \tau}=\right) \frac{\mathrm{c}}{\sqrt{1-\left(\frac{v_{1}}{\mathrm{c}}\right)^{2}}}=C_{0} \mathrm{e}^{\frac{M_{G}}{r_{1}}}$.
But the ratio of two constants is converge, that is,
when speed v_{1} close to $\mathrm{c}($ light speed $)$, then $\frac{C}{C_{0}}=r_{1} \frac{v_{1}}{\mathrm{c}} \mathrm{e}^{\frac{M_{G}}{r_{1}}}$ close to $R_{\odot} \mathrm{e}^{\frac{M_{G}}{R_{\odot}}} \fallingdotseq R_{\odot}$.
Then the elliptic orbit equation (for r)

$$
\begin{equation*}
\frac{\mathrm{d} r}{\mathrm{e}^{-\frac{M_{G}}{r}} \mathrm{~d} \Phi}=-r \sqrt{\frac{C_{0}{ }^{2}-\mathrm{c}^{2}}{C^{2}} r^{2}+M_{G}\left(\frac{4 C_{0}{ }^{2}-2 \mathrm{c}^{2}}{C^{2}}\right) r-\left(1-M_{G}{ }^{2} \frac{8 C_{0}{ }^{2}-2 \mathrm{c}^{2}}{C^{2}}\right)} . \tag{12}
\end{equation*}
$$

It is converge to

$$
\frac{\mathrm{d} r}{\mathrm{~d} \theta}=\frac{\mathrm{d} r}{\mathrm{e}^{-\frac{M_{G}}{r}} \mathrm{~d} \Phi}=-r \sqrt{\frac{1}{R_{\odot}{ }^{2}} r^{2}+M_{G}\left(\frac{4}{R_{\odot}{ }^{2}}\right) r-\left(1-M_{G}{ }^{2} \frac{8}{R_{\odot}{ }^{2}}\right)} .
$$

Then the orbit is hyperbolic and
$r=\frac{1.64021 \times 10^{14}}{1+235662 \sin (0.999999999981994 \theta)}$.
Fig. 4 shows the curve of light.
We compare the elliptic(hyperbolic) orbit
$\frac{1}{r}=\frac{\frac{2 M_{G}}{R_{\odot}{ }^{2}}}{1-\frac{8 M_{G}{ }^{2}}{R_{\odot}{ }^{2}}}\left(1+\boldsymbol{e} \sin \left(\sqrt{1-\frac{8 M_{G}{ }^{2}}{R_{\odot}{ }^{2}}} \cdot \theta\right)\right), \mathrm{d} \theta=\mathrm{e}^{-\frac{M_{G}}{r}} \mathrm{~d} \Phi$.
$r_{0}=\frac{1-\frac{8 M_{G}{ }^{2}}{R_{\odot}{ }^{2}}}{\frac{2 M_{G}}{R_{\odot}{ }^{2}}}=1.64021 \times 10^{14}$,

Fig.4.The curve of light
$n_{f}=\sqrt{1-\frac{8 M_{G}{ }^{2}}{R_{\odot}{ }^{2}}}=0.999999999981994$,
$R_{\odot}\left(=r_{1}\right)=\frac{1.64021 \times 10^{14}}{1+235662}=6.95997 \times 10^{8}, \boldsymbol{e}=\frac{1-\frac{8 M_{G}{ }^{2}}{R_{\odot}{ }^{2}}}{\frac{2 M_{G}}{R_{\odot}}}\left(=\frac{r_{0}}{r_{1}}\right)-1 \doteqdot \frac{R_{\odot}}{2 M_{G}}=235662$.
The slope of asymptote is $\tan \phi=\sqrt{\boldsymbol{e}^{2}-1} \fallingdotseq \boldsymbol{e}=235662$.
Therefore, the vending of light is

$$
2\left(\frac{\pi}{2}-\phi\right) \fallingdotseq 2 \tan \left(\frac{\pi}{2}-\phi\right)=\frac{2}{\tan \phi}=\frac{2}{235662}=8.48674 \times 10^{-6}[\mathrm{rad}]=\underline{1.750511^{\prime \prime}}
$$

5. Conclusion

The movement of Planet is similar to one of electron. And its equation is those that have change the R_{0} (in the electromagnetic) to the $M_{G}=\frac{G M}{\mathrm{c}^{2}}$ (in the gravity).

References

[1] Y. Takemoto, New Notation and Relativistic Form of the 4-dimensional Vector in Time-Space, Bull. of NBU, Vol. 34, No. 1 (2006-Mar.) pp. 32-38.
[2] Y. Takemoto, S. Shimamoto, The Gravitational Force And The Electromagnetic Force, Bull. of NBU, Vol. 43, No. 1 (2015- Mar.) pp.1-12.
[3] Y. Takemoto, S. Shimamoto, The Boltzmann constant, the Planck constant and the Temperature, Bull. of NBU, Vol. 44, No. 2 (2016- Oct.) pp.55-65.
[4] Y. Takemoto, S. Shimamoto, The Oscillation with Planck Constant, Bull. of NBU, Vol. 45, No. 2 (2017- Nov.) pp.153-162.
[5] Y. Takemoto, S. Shimamoto, The inside of the Bohr radius, Bull. of NBU, Vol. 46, No. 2 (2018Oct.) pp.67-77.

