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Abstract 

 

   The Boltzmann constant and the Planck constant is “independent”. Planck's law describes the 

amount of electromagnetic radiational energy 
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emitted by the black body 

in thermal equilibrium at a definite temperature. Where kB is the Boltzmann constant, h is the Planck 

constant, and c  is the speed of light in the medium, whether material or vacuum. 

   In this paper, we define the temperature by the frequency of the light radiated from a particle and 

it cleared the meaning of the Shimamoto relation “
c

B

h
k

e
= “ between the kB (the Boltzmann 

constant) and h (the Planck constant). 

 

1. Preliminaries 

(i) The Boltzmann constant 

   The Boltzmann constant Bk  is a physical constant relating energy and temperature at the 

individual particle level. 

It is the gas constant R divided by the Avogadro constant AN . 

 

(ii) The Planck constant 

   The Planck constant h was originally the proportionality constant between the energy E and the 

frequency   of light. 

 

(iii) PV nRT=  

   The ideal gas law is the equation of state of a hypothetical ideal gas.  

P  is the pressure of the gas. 

V  is the volume of the gas. 

n  is the amount of substance of gas (in moles). 

   R  is the ideal gas constant, equal to the product of the Boltzmann constant and the Avogadro 
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constant. 

   T  is the temperature of the gas which can be derived microscopically from kinetic theory. 

 

2． The electron orbit which considered the Planck constant  
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in the Atomic shell 

   In this paper, we assume the angular moment of electron is constant in the atomic shell. 

(In the case A) 

   The first electron around the n -proton with ( )q ne=  charge. 

   We assume the angular moment is the same value as the Planck constant and the orbit is a circle, 

then 

(i) By the balance in the circle 
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   Then, the energy of the electron around the proton is  
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   Therefore, the formula of the n-th ionization energy 
( 1)n nX X+ − +→ is  

2
0

1

2
2 2 2

21

c
( c ) /1000 ( c ) /1000 1312.7

1 ( )
c

n R

re
A e A e

m
N m E N m e n

nv

−

− = − = 

−

, 

where 
236.02214 10AN =  is the Avogadro number and 

nX +
 means the bare atomic nucleus. 

 

Table 1. Ionization energy and calculated I.E. and radius. 

Atom H  He Li Be B C N O F Ne 

I.E. 1312.0 5250.3 11814.7 21006.6 32826.7 47277.0 64360.0 84078.0 106434.3 131432.0 

Calculated I.E. 1312.7 5250.8 11814.3 21003.2 32817.5 47257.2 64322.3 84012.8 106328.7 131270.0 
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Radius×10^(-11) 5.292 2.646 1.764 1.323 1.058 0.882 0.756 0.661 0.588 0.529 

 

   In the case of hydrogen, the orbit is an oval. Because the solutions of the “orbit equation”      
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111 5.16491 10r −=  (perihelion) and 

112 5.42420 10r −=  (aphelion), 
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   Therefore the orbital eccentricity is 0.0244865 . 

 

 

(In the case B) 

   The second electron around the n -proton with ( )q ne=  charge. 

   We assume the angular moment is the same value as the Planck constant and the orbit is an 

opposite point in a common circle, then 

(i) By the balance in the circle 
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                                              Fig. 2. The orbit of second electron. 
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   Then, the energy of the electron around the proton is  
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   Therefore, the formula of ( 1)n − -th ionization energy 
( 2) ( 1)n nX X+ − + −→  is  
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Fig. 1. The orbit of first electron. 
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Table 2. Ionization energy and calculated I.E. ratio and radius. 

Atom He Li Be B C N O F Ne 

I. E. 2372.3 7298.0 14848.7 25025.8 37831.0 53266.6 71330.0 92038.1 115379.5 

Calculated I. E. 2871.3 8120.1 15990.0 26476.8 39575.3 55279.1 73580.4 94470.1 117937.9 

Ratio 1.21 1.11 1.08 1.06 1.05 1.04 1.03 1.03 1.02 

Radius×10^(-11) 3.024 1.924 1.411 1.114 0.9203 0.7840 0.6828 0.6048 0.5427 

 

   This difference between I. E. and the calculated value is caused by the orbit’s being an oval and 

twin star style. In the case of Helium, the solutions of the “orbit equation” 
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  Therefore the orbital eccentricity is 0.443731 . 

 

 

                                               

Fig. 3. The twin orbit of second electron. 

 

   In the case of Lithium, the solutions of the “orbit equation”  
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 Therefore the orbital eccentricity is 0.484815 . And so on. 

 

 

(In the case C) 

   The third electron around the n -proton with q ( ne= ) charge. 

   We assume the angular moment is the same value as the Planck constant, then we get the oval 

orbit by the ionization energy data.  

 Therefore, table 3 shows the energy of ( 1n − )-th ionization energy 
( 3) ( 2)n nX X+ − + −→ . 

 

Table 3. The measurement value of I. E.. 

Atom Li Be B C N O F Ne 

I. E. 520.2 1757.1 3659.7 6222.7 9444.9 13326.5 17868.0 23069.5 
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   Generally, we get the orbit of the electron by the I. E. value and the Planck constant or speed of 

area which value is the same resonance value of all electrons. 

   In the case of Lithium, the solutions of the “orbit equation” 
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                                                      Fig. 4. The orbit of third electron. 

 

 Therefore the orbital eccentricity is 0.473922 . 

 

 

And In the case of Beryllium, the solutions of the “orbit equation”  
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 Therefore the orbital eccentricity is 0.566637 . 

 

 

 

   And In the case of Boron, the solutions of the “orbit equation” 
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3. The meaning of the temperature 

   We transform the equation of state of an ideal gas 
A BPV nRT nN k T= =  to the “matrix form” 

as follows: 
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And A BnN k T (the right side of equation) is transformed as follows:   

  We take the only one particle. Then 1AnN = , therefore A B BnN k T k T= . 

   In this situation, we pay attention to the "Shimamoto relation" which is the relation between the 

Boltzmann constant and the Plank constant 
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(Example 2) The kinetic energy  

By the formula 
[ ]d d c dJ x JE x e =  =f E , we transform to the matrix. 

dc

d
d d

d

d

t

J

t

f
E






+ +

− −
 
  
 =  
   − 
 
 

rf
  

                                                     Fig. 7. The image of a particle. 
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 
  

 

 

   Then the time component is 
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e
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E L e

e
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 
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 2
2 2
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E L r
f m u




    
=  =   

2

1 1

1 1

d 1 d
( c ,0,0) ( ,0,0)

dc d
e

r
m


 

   
=  2 d d

( c ,0,0) ( ,0,0)
dc d

e

r
m



 
=   

2 d
( c ,0,0)

d
e x xm


 


=

2
2 d( )1

c ( ,0,0)
2 d

x x
em

 


= . 

 2

2 2 2

[ ][ / ]

1 1
( ) c ( )

2 2
m e x x e xkgm s

E PV L m m v = = = ≒f  which is one way quantity. 

 

4. Conclusion 

   The electron is move at the resonance point which is expressed by the angular moment (or 

Planck constant) of the electric field. 

   Temperature is the frequency of light which has been caused by collision of a particle. 
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