The Boltzmann constant, the Planck constant and the Temperature*

Yoshio TAKEMOTO**, Seishu SHIMAMOTO***
 Department of Mechanical and Electrical Engineering, School of Engineering,
 Nippon Bunri University

Abstract

The Boltzmann constant and the Planck constant is "independent". Planck's law describes the amount of electromagnetic radiational energy $B_{v}(v, T)=\frac{2 h v^{3}}{\mathrm{c}^{2}} \frac{1}{e^{\frac{h v}{k_{B} T}}-1}$ emitted by the black body in thermal equilibrium at a definite temperature. Where k_{B} is the Boltzmann constant, h is the Planck constant, and c is the speed of light in the medium, whether material or vacuum.

In this paper, we define the temperature by the frequency of the light radiated from a particle and it cleared the meaning of the Shimamoto relation " $k_{B}=\frac{h}{e c}$ " between the k_{B} (the Boltzmann constant) and h (the Planck constant).

1. Preliminaries

(i) The Boltzmann constant

The Boltzmann constant k_{B} is a physical constant relating energy and temperature at the individual particle level.
It is the gas constant R divided by the Avogadro constant N_{A}.
(ii) The Planck constant

The Planck constant h was originally the proportionality constant between the energy E and the frequency v of light.
(iii) $P V=n R T$

The ideal gas law is the equation of state of a hypothetical ideal gas.
P is the pressure of the gas.
V is the volume of the gas.
n is the amount of substance of gas (in moles).
R is the ideal gas constant, equal to the product of the Boltzmann constant and the Avogadro
constant.
T is the temperature of the gas which can be derived microscopically from kinetic theory.

2. The electron orbit which considered the Planck constant \hbar

$$
\left(=m_{e} r_{1} \frac{v_{1}}{\sqrt{1-\left(\frac{v_{1}}{\mathrm{c}}\right)^{2}}}=m_{e} r_{1} u_{1}: \text { momentum }\right) \text { in the Atomic shell }
$$

In this paper, we assume the angular moment of electron is constant in the atomic shell.
(In the case A)
The first electron around the n-proton with $q(=n e)$ charge.
We assume the angular moment is the same value as the Planck constant and the orbit is a circle, then
(i) By the balance in the circle $\frac{m_{e} v^{2}}{r}=\frac{k_{0} e q}{r^{2}}\left(=\frac{n k_{0} e^{2}}{r^{2}}\right) \quad \therefore m_{e} r v^{2}=n k_{0} e^{2}$.
$\therefore\left(\frac{v}{\mathrm{c}}\right)^{2}=\frac{n k_{0} e^{2}}{m_{e} r \mathrm{c}^{2}}=\frac{n R_{0}}{r}, R_{0}=\frac{k_{0} e^{2}}{m_{e} \mathrm{c}^{2}}$
(ii) By the hypothesis, the angular moment is $m_{e} r v=m_{e} r_{1} v_{1} \fallingdotseq \hbar\left(=m_{e} r_{1} u_{1}\right) \quad \therefore v \fallingdotseq \frac{\hbar}{m_{e} r}$ By the relation (i),(ii).

$$
\begin{aligned}
& \frac{n R_{0}}{r}\left[=\left(\frac{v}{\mathrm{c}}\right)^{2}\right] \fallingdotseq\left(\frac{\hbar}{m_{e} r \mathrm{c}}\right)^{2} \therefore r \fallingdotseq \frac{1}{n} \frac{\hbar^{2}}{m_{e}^{2} \mathrm{c}^{2} R_{0}}=\frac{1}{n} r_{1} \\
& r_{1}=\frac{\hbar^{2}}{m_{e}^{2} c^{2} R_{0}}=\frac{\hbar^{2}}{m_{e} k_{0} e^{2}}=5.29166 \times 10^{-11}, v \fallingdotseq \frac{\hbar}{m_{e} r}=n \frac{\hbar}{m_{e} r_{1}}=n v_{1} .
\end{aligned}
$$

Then, the energy of the electron around the proton is

$$
\begin{aligned}
E=m_{e} \mathrm{c} C_{0}= & \frac{m_{e} \mathrm{c}^{2}}{\sqrt{1-\left(\frac{v}{\mathrm{c}}\right)^{2}}} e^{-\frac{n R_{0}}{r}} \fallingdotseq \frac{m_{e} \mathrm{c}^{2}}{\sqrt{1-\left(\frac{n v_{1}}{\mathrm{c}}\right)^{2}}} e^{-\frac{n^{2} R_{0}}{r_{1}}} \\
& =m_{e} \mathrm{c}^{2}\left(1+\frac{1}{2} \frac{n^{2} R_{0}}{r_{1}}+\cdots\right)\left(1-\frac{n^{2} R_{0}}{r_{1}}+\cdots\right)=m_{e} \mathrm{c}^{2}\left(1-\frac{n^{2}}{2} \frac{R_{0}}{r_{1}}+\cdots\right)
\end{aligned}
$$

Therefore, the formula of the n-th ionization energy $X^{+(n-1)} \rightarrow X^{+n}$ is

$$
N_{A}\left(m_{e} \mathrm{c}^{2}-E\right) / 1000=N_{A}\left(m_{e} \mathrm{c}^{2}-\frac{m_{e} \mathrm{c}^{2}}{\sqrt{1-\left(\frac{n v_{1}}{\mathrm{c}}\right)^{2}}} e^{-\frac{n^{2} R_{0}}{r_{1}}}\right) / 1000=1312.7 \times n^{2}
$$

where $N_{A}=6.02214 \times 10^{23}$ is the Avogadro number and X^{+n} means the bare atomic nucleus.
Table 1. Ionization energy and calculated I.E. and radius.

Atom	H	He	Li	Be	B	C	N	O	F	Ne
I.E.	$\mathbf{1 3 1 2 . 0}$	$\mathbf{5 2 5 0 . 3}$	11814.7	21006.6	32826.7	47277.0	64360.0	84078.0	106434.3	131432.0
Calculated I.E.	$\mathbf{1 3 1 2 . 7}$	$\mathbf{5 2 5 0 . 8}$	11814.3	21003.2	32817.5	47257.2	64322.3	84012.8	106328.7	131270.0

Radius $\times 10^{\wedge}(-11)$	5.292	2.646	1.764	1.323	1.058	0.882	0.756	0.661	0.588	0.529

In the case of hydrogen, the orbit is an oval. Because the solutions of the "orbit equation"

$$
\left(\frac{C}{r}\right)^{2}-C_{0}^{2} e^{2 \frac{R_{0}}{r}}+\mathrm{c}^{2}=0
$$

are $r 1=5.16491 \times 10^{-11}$ (perihelion) and $r 2=5.42420 \times 10^{-11}$ (aphelion), where $E_{1}=m_{e} \mathrm{c} C_{0}=m_{e} \mathrm{c}^{2}-1312.0 \times 1000 / N_{A_{\left[k g m^{2} / s^{2}\right]}}$ is an orbit energy and $C=r_{1} v_{1}=1.15768 \times 10^{-4}{ }_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}$ is a speed of area.

Therefore the orbital eccentricity is 0.0244865 .

Fig. 1. The orbit of first electron.
(In the case B)
The second electron around the n-proton with $q(=n e)$ charge.
We assume the angular moment is the same value as the Planck constant and the orbit is an opposite point in a common circle, then
(i) By the balance in the circle $\frac{m_{e} v^{2}}{r}=\frac{n k_{0} e^{2}}{r^{2}}-\frac{k_{0} e^{2}}{(2 r)^{2}} \quad \therefore m_{e} r v^{2}=\frac{4 n-1}{4} k_{0} e^{2}$.
$\therefore\left(\frac{v}{\mathrm{c}}\right)^{2}=\frac{4 n-1}{4} \frac{k e^{2}}{m_{e} r \mathrm{c}^{2}}=\frac{4 n-1}{4} \frac{R_{0}}{r}$
(ii) By the hypothesis, the angular moment is $m_{e} r v=m_{e} r_{1} v_{1} \fallingdotseq \hbar\left(=m_{e} r_{1} u_{1}\right) \quad \therefore v \fallingdotseq \frac{\hbar}{m_{e} r}$

By the relation (i),(ii).
$\frac{4 n-1}{4} \frac{R_{0}}{r}\left(=\left(\frac{v}{\mathrm{c}}\right)^{2}\right) \fallingdotseq\left(\frac{\hbar}{m_{e} r \mathrm{c}}\right)^{2}$.

Fig. 2. The orbit of second electron.
$\therefore r \fallingdotseq \frac{4}{4 n-1} \frac{\hbar^{2}}{m_{e}^{2} \mathrm{c}^{2} R_{0}}=\frac{4}{4 n-1} r_{1}, v \fallingdotseq \frac{\hbar}{m_{e} r}=\frac{4 n-1}{4} \frac{\hbar}{m_{e} r_{1}}=\frac{4 n-1}{4} v_{1}$.
Then, the energy of the electron around the proton is
$E_{1}=m_{e} \mathrm{c} C_{0}=\frac{m_{e} \mathrm{c}^{2}}{\sqrt{1-\left(\frac{v}{\mathrm{c}}\right)^{2}}} e^{-\frac{n k_{0} e^{2}}{m_{e} \mathrm{c}^{2} r}+\frac{k_{0} e^{2}}{m_{e} e^{2}(2 r)}}=\frac{m_{e} \mathrm{c}^{2}}{\sqrt{1-\left(\frac{v}{\mathrm{c}}\right)^{2}}} e^{-\frac{2 n-1}{2 r} \frac{k_{0} e^{2}}{m_{e} c^{2}}} \fallingdotseq \frac{m_{e} \mathrm{c}^{2}}{\sqrt{1-\left(\frac{4 n-1}{4} \frac{v_{1}}{\mathrm{c}}\right)^{2}}} e^{-\frac{2 n-14 n-1 R_{0}}{2} \frac{R_{0}}{r_{1}}}$
$=m_{e} \mathrm{c}^{2}\left(1+\frac{1}{2}\left(\frac{4 n-1}{4}\right)^{2} \frac{R_{0}}{r_{1}}-\frac{(2 n-1)(4 n-1)}{2 \cdot 4} \frac{R_{0}}{r_{1}}+\cdots\right)=m_{e} c^{2}\left(1-\frac{(4 n-1)(4 n-3)}{32} \frac{R_{0}}{r_{1}}+\cdots\right)$.
Therefore, the formula of $(n-1)$-th ionization energy $X^{+(n-2)} \rightarrow X^{+(n-1)}$ is
$N_{A}\left(m_{e} \mathrm{c}^{2}-E\right) / 1000=N_{A}\left(m_{e} \mathrm{c}^{2}-\frac{m_{e} \mathrm{c}^{2}}{\sqrt{1-\left(\frac{4 n-1}{4} \frac{v_{1}}{\mathrm{c}}\right)^{2}}} e^{\left.-\frac{2 n-14 n-1 \frac{R_{0}}{2} \frac{r_{1}}{r_{1}}}{}\right) / 1000 ~ . ~ . ~ . ~}\right.$

Table 2. Ionization energy and calculated I.E. ratio and radius.

Atom	He	Li	Be	B	C	N	O	F	Ne
I. E.	2372.3	7298.0	14848.7	25025.8	37831.0	53266.6	71330.0	92038.1	115379.5
Calculated I. E.	2871.3	8120.1	15990.0	26476.8	39575.3	55279.1	73580.4	94470.1	117937.9
Ratio	1.21	1.11	1.08	1.06	1.05	1.04	1.03	1.03	1.02
Radius $\times 10^{\wedge}(-11)$	3.024	1.924	1.411	1.114	0.9203	0.7840	0.6828	0.6048	0.5427

This difference between I. E. and the calculated value is caused by the orbit's being an oval and twin star style. In the case of Helium, the solutions of the "orbit equation"

$$
\left(\frac{C}{r}\right)^{2}-C_{0}^{2} e^{2 \frac{3 R_{0}}{2 r}}+\mathrm{c}^{2}=0
$$

are $r 1=2.44321 \times 10^{-11}$ (perihelion) and $r 2=6.34106 \times 10^{-11}$ (aphelion), where $E_{2}=m_{e} \mathrm{c} C_{0}=m_{e} \mathrm{c}^{2}-2372.3 \times 1000 / N_{A_{\left[k g m^{2} / \mathrm{s}^{2}\right]}}$ is an orbit energy and $C=r_{1} v_{1}=1.15768 \times 10_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}^{-4}$ is a speed of area.

Therefore the orbital eccentricity is 0.443731 .

Fig. 3. The twin orbit of second electron.

In the case of Lithium, the solutions of the "orbit equation"

$$
\left(\frac{C}{r}\right)^{2}-C_{0}^{2} e^{2 \frac{5 R_{0}}{2 r}}+\mathrm{c}^{2}=0
$$

are $r 1=1.42613 \times 10^{-11}$ (perihelion) and $r 2=4.11025 \times 10^{-11}$ (aphelion),
where $E_{2}=m_{e} \mathrm{c} C_{0}=m_{e} \mathrm{c}^{2}-7298.0 \times 1000 / N_{A_{\left[\mathrm{kgm}^{2} / \mathrm{s}^{2}\right]}}$ is an orbit energy
and $C=r_{1} v_{1}=1.15768 \times 10^{-4}{ }_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}$ is a speed of area.

Therefore the orbital eccentricity is 0.484815 . And so on.
(In the case C)
The third electron around the n-proton with $q(=n e)$ charge.
We assume the angular moment is the same value as the Planck constant, then we get the oval orbit by the ionization energy data.
Therefore, table 3 shows the energy of ($n-1$)-th ionization energy $X^{+(n-3)} \rightarrow X^{+(n-2)}$.
Table 3. The measurement value of I. E..

Atom	Li	Be	B	C	N	O	F	Ne
I. E.	520.2	1757.1	3659.7	6222.7	9444.9	13326.5	17868.0	23069.5

Generally, we get the orbit of the electron by the I. E. value and the Planck constant or speed of area which value is the same resonance value of all electrons.

In the case of Lithium, the solutions of the "orbit equation"

$$
E_{3}=m_{e} \mathrm{C} C_{0}=m_{e} \mathrm{c}^{2}-520.2 \times 1000 / N_{A_{\left[k m^{2} / s^{2}\right]}} \text { and }
$$

the speed of area $C=r_{1} v_{1}=1.15768 \times 10^{-4}{ }_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}$

$$
\left(\frac{C}{r}\right)^{2}-C_{0}^{2} e^{2 \frac{R_{0}}{r}}+\mathrm{c}^{2}=0
$$

are $r 1=8.02322 \times 10^{-11}$ (perihelion)

and $r 2=2.24788 \times 10^{-10}$ (aphelion) in approximate way,
where $E_{3}=m_{e} \mathrm{c} C_{0}=m_{e} \mathrm{c}^{2}-520.2 \times 1000 / N_{A_{\left[\mathrm{kgm}^{2} / \mathrm{s}^{2}\right]}}$ is an orbit energy and $C=r_{1} v_{1}=1.15768 \times 10_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}^{-4} \quad$ is a speed of area.

Fig. 4. The orbit of third electron.
Therefore the orbital eccentricity is 0.473922 .

And In the case of Beryllium, the solutions of the "orbit equation"

$$
\left(\frac{C}{r}\right)^{2}-C_{0}^{2} e^{2 \frac{2 R_{0}}{r}}+\mathrm{c}^{2}=0
$$

are $r 1=3.85957 \times 10^{-11}$ (perihelion) and $r 2=1.39526 \times 10^{-10}$ (aphelion) in approximate,
where $E_{3}=m_{e} \mathrm{c} C_{0}=m_{e} \mathrm{c}^{2}-1757.1 \times 1000 / N_{A_{\left[\mathrm{kgm}^{2} / \mathrm{s}^{2}\right]}}$ is an orbit energy
and $C=r_{1} v_{1}=1.15768 \times 10_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}^{-4}$ is a speed of area.

Therefore the orbital eccentricity is 0.566637 .

And In the case of Boron, the solutions of the "orbit equation"

$$
\left(\frac{C}{r}\right)^{2}-C_{0}^{2} e^{2 \frac{3 R_{0}}{r}}+\mathrm{c}^{2}=0
$$

are $r 1=2.47546 \times 10^{-11}$ (perihelion) and $r 2=1.02282 \times 10^{-10}$ (aphelion) in approximate way,
where $E_{3}=m_{e} \mathrm{c} C_{0}=m_{e} \mathrm{c}^{2}-3659.7 \times 1000 / N_{A_{\left[\mathrm{kgm}^{2} / \mathrm{s}^{2}\right]}}$ is an orbit energy
and $C=r_{1} v_{1}=1.15768 \times 10^{-4}{ }_{\left[\mathrm{m}^{2} / \mathrm{s}\right]}$ is a speed of area.
Therefore the orbital eccentricity is 0.610276 . And so on.

3. The meaning of the temperature

We transform the equation of state of an ideal gas $P V=n R T=n N_{A} k_{B} T$ to the "matrix form" as follows:
(i) $P V$ (the left side of equation)

The force is $f_{x\left[k g m / s^{2}\right]}=p_{\left[k g m / s^{2} / \mathrm{m}^{2}\right]} \cdot S_{y z\left[\mathrm{~m}^{2}\right]}=-\mathrm{i} p_{\left[\mathrm{kgm} / \mathrm{s}^{2} / \mathrm{m}^{2}\right]} \cdot \mathrm{i} S_{y z\left[\mathrm{~m}^{2}\right]}$ where, $\mathrm{i} p_{\left[\mathrm{kgm} / \mathrm{s}^{2} / \mathrm{m}^{2}\right]}$ is a pressure. Therefore

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & \\
& f_{x\left[k g m / s^{2}\right]}
\end{array}\right]^{-} } & =\left[\begin{array}{ll}
-\mathrm{i} p_{\left[k g m / s^{2} / m^{2}\right]} & \\
& 0
\end{array}\right]^{-+}\left[\begin{array}{ll}
0 & \\
& \mathrm{i} S_{y z\left[\mathrm{~m}^{2}\right]}
\end{array}\right]^{-}, S_{y z\left[m^{2}\right]}=L_{y[m]} \cdot L_{z[m]} \\
& =\left[\begin{array}{ll}
-\mathrm{i} p_{\left[k g m / s^{2} / m^{2}\right]} & \\
& 0
\end{array}\right]^{-+}\left[\begin{array}{ll}
0 & \\
& -L_{y[m]}
\end{array}\right]^{+-}\left[\begin{array}{ll}
0 & \\
& L_{z[m]}
\end{array}\right]
\end{aligned}
$$

Then, energy $P V$ is

$$
\begin{aligned}
{\left[\begin{array}{ll}
-\boldsymbol{f}_{\left[k g m / s^{2}\right]} L_{m m]} \\
& 0
\end{array}\right]^{+} } & =\left[\begin{array}{ll}
0 & \\
& f_{x\left[k g m / s^{2}\right]}
\end{array}\right]^{-+}\left[\begin{array}{ll}
0 & \\
& -L_{x[m]}
\end{array}\right]^{+} \\
& =\underbrace{\left[\begin{array}{cc}
-i p_{\left[k g m /\left(s^{2} / m^{2}\right)\right]} & \\
& 0
\end{array}\right]^{-+}}_{p} \underbrace{\left[\begin{array}{ll}
0 & \\
& \\
& i S_{y z\left[m^{2}\right]}
\end{array}\right]^{-+}\left[\begin{array}{ll}
0 & \\
& -L_{x[m]}
\end{array}\right]^{+}}_{V}
\end{aligned}
$$

And $n N_{A} k_{B} T$ (the right side of equation) is transformed as follows:
We take the only one particle. Then $n N_{A}=1$, therefore $n N_{A} k_{B} T=k_{B} T$.
In this situation, we pay attention to the "Shimamoto relation" which is the relation between the Boltzmann constant and the Plank constant

$$
k_{B_{\left[k g m / K s^{2}\right]}}=\frac{h_{\left[k g m^{2} / s\right]}}{e \mathrm{c}_{[C m / s]}}=\frac{2 \pi m_{e[k g]} r_{1[m]} v_{1[m / s]}}{e_{[C]} \mathrm{c}_{[\mathrm{m} / \mathrm{s}]}}\left(\fallingdotseq \frac{2 \pi m_{e[k g]} r_{1[m]} u_{1[m / s]}}{e_{[C]} \mathrm{c}_{[m / s]}}\right)
$$

And we define "the Boltzmann" as

$$
\begin{aligned}
\overrightarrow{k_{B}} & =\frac{2 \pi \gamma_{1} \beta_{1}}{e_{[C]} \mathrm{c}_{[m / s]}}{ }^{-}\left[\begin{array}{ll}
0 & \\
& \left(r_{1}, 0,0\right)
\end{array}\right]_{[m]}^{-}\left[\begin{array}{ll}
m_{e} u_{0} & \\
& -\left(0, m_{e} u_{1}, 0\right)
\end{array}\right]_{[k g m / s]}^{+} \\
& =\frac{2 \pi \gamma_{1} \beta_{1}}{e_{[C]} \mathrm{c}_{[m / s]}}{ }^{-}\left[\begin{array}{ll}
0 & \left.\left(m_{e} r_{1} \underline{u_{0}}, 0, i m_{e} r_{1} u_{1}\right)\right]_{\left[k g m^{2} / s\right]}^{+},\left|\overrightarrow{k_{B}}\right|=\frac{2 \pi m_{e} r_{1} u_{1}}{e \mathrm{c}}
\end{array}\right.
\end{aligned}
$$

where $\frac{u_{0}}{\mathrm{c}}=\frac{d t}{d \mathrm{c} \tau}=\gamma_{1}, \frac{u}{\mathrm{c}}=\frac{\mathrm{d} r}{\mathrm{dc} \tau}=\gamma_{1} \beta_{1}, u_{0}{ }^{2}-u^{2}=\mathrm{c}^{2}$

Then the dimension of temperature $T_{[K]}$ is $T_{[K]}=\frac{P V}{k_{B}}=\frac{f_{\left[k g m / s^{2}\right]} L_{[m]}}{\frac{2 \pi m_{e[k g]} r_{1[m]} u_{1[m / s]}}{e_{[C]} \mathrm{c}_{[m / s]}}}$,
Then $[K]=\left[\mathrm{Cm} / \mathrm{s}^{2}\right]$.
Therefore, we define the temperature as the acceleration quantity, that is to say

$$
\frac{\mathrm{d}^{-}}{\mathrm{d} \tau}\left[\begin{array}{cc}
e \gamma & (0, e \gamma \beta, 0)]_{[C / m]}^{-}=\frac{2 \pi \vec{T} \gamma_{1} \beta_{1}}{e_{[C]} \mathrm{c}_{[m / s]}}\left[^{e \gamma_{1}} \quad\left(0, e \gamma_{1} \beta_{1}, 0\right)\right]_{[C]} \\
& \underbrace{-}_{n} \\
\hline
\end{array}\right.
$$

Fig. 6. The collision of two particles.
Then

$$
\begin{aligned}
& \vec{T}_{[K]}=\frac{e_{[C]} \mathrm{c}_{[m / s]}}{2 \pi \gamma_{1} \beta_{1}} \frac{\mathrm{~d}^{-}}{\mathrm{d} \tau}{ }^{-}\left[\begin{array}{ll}
e \gamma & \\
& (0, e \gamma \beta, 0)]_{[C / s]}^{-} \cdot\left[\begin{array}{ll}
e \gamma_{1} & \\
& \left(0, e \gamma_{1} \beta_{1}, 0\right)
\end{array}\right]_{[/ C]}^{-,-1},{ }^{-} .
\end{array}\right. \\
& =\frac{e_{[C]} \mathrm{c}_{[m / s]}}{2 \pi \gamma_{1} \beta_{1}}\left[\begin{array}{ll}
\frac{\mathrm{d} \gamma}{\mathrm{~d} \tau}(=0) & \\
& \left(\frac{\mathrm{d} \gamma \beta}{\mathrm{~d} \tau}, 0,0\right)
\end{array}\right]_{[/ s]}^{-}\left[\begin{array}{ll}
\gamma_{1} & \\
& -\left(0, \gamma_{1} \beta_{1}, 0\right)
\end{array}\right]_{[-]}^{+} \\
& =\frac{e \mathrm{c}}{2 \pi}\left[\begin{array}{l}
0 \\
\left(\frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau} \underline{\gamma_{1}}, 0, \mathrm{i} \frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau} \underline{\gamma_{1} \beta_{1}}\right)
\end{array}\right]^{+},|\vec{T}|=\frac{e \mathrm{c}}{2 \pi} \frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau}
\end{aligned}
$$

Because, for simplicity $\beta_{1} \bullet r_{1}=0 \quad\left(\underline{\underline{\beta_{1} \perp r_{1}}}\right)$, and $\beta_{1} \bullet \frac{\mathrm{~d} \beta}{\mathrm{~d} \tau}=0 \quad \underline{\left.\underline{\left(\beta_{1} \perp \frac{\mathrm{~d} \beta}{\mathrm{~d} \tau}\right.}\right)}$ $\frac{\mathrm{d} \gamma}{\mathrm{d} \tau}=\frac{\mathrm{d}}{\mathrm{d} \tau}\left(\frac{1}{\sqrt{1-\left(\frac{v}{\mathrm{c}}\right)^{2}}}\right)=\frac{2\left(\frac{v_{1}}{\mathrm{c}}\right) \cdot \frac{\mathrm{d}}{\mathrm{d} \tau}\left(\frac{v}{\mathrm{c}}\right)}{1-\left(\frac{v_{1}}{\mathrm{c}}\right)^{2}}=\frac{2\left(\frac{v_{1}}{\mathrm{c}}\right)}{1-\left(\frac{v_{1}}{\mathrm{c}}\right)^{2}} \cdot \frac{\mathrm{~d}\left(\frac{v}{\mathrm{c}}\right)}{\mathrm{d} \tau}=2 \gamma_{1}^{2} \beta_{1} \cdot \frac{\mathrm{~d} \beta}{\mathrm{~d} \tau}(=0)$

$$
\frac{\mathrm{d} \gamma \beta}{\mathrm{~d} \tau}=\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\frac{\frac{v_{1}}{\mathrm{c}}}{\sqrt{1-\left(\frac{v_{1}}{\mathrm{c}}\right)^{2}}}\right)=\frac{\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\frac{v_{1}}{\mathrm{c}}\right)}{\sqrt{1-\left(\frac{v_{1}}{\mathrm{c}}\right)^{2}}}=\gamma_{1} \frac{\mathrm{~d} \beta}{\mathrm{~d} \tau}
$$

Then the energy is
$\underbrace{\left[\begin{array}{ll}\boldsymbol{f}_{\left[\mathrm{kgm} / \mathrm{s}^{2}\right]} & L_{[\mathrm{m}]} \\ & 0\end{array}\right]^{+}}_{P V}$

Because the time component is

$$
\begin{aligned}
& \boldsymbol{f}_{\left[k g m / s^{2}\right]} L_{m]} \\
& =\frac{2 \pi u_{1}}{e \mathrm{c}}\left(m_{e} r_{1} \underline{\gamma_{1}}\right) \cdot \frac{e \mathrm{c}}{2 \pi}\left(\frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau} \underline{\gamma_{1}}\right)+\frac{2 \pi u_{1}}{e \mathrm{c}}\left(\mathrm{i} m_{e} r_{1} \underline{\gamma_{1}} \beta_{1}\right) \cdot \frac{e \mathrm{c}}{2 \pi}\left(\mathrm{i} \frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau} \underline{\gamma_{1}} \beta_{1}\right) \\
& =\frac{2 \pi u_{1}}{e \mathrm{c}} m_{e} r_{1} u_{1} \cdot \frac{e \mathrm{c}}{2 \pi} \frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau}\left(\gamma_{1}{ }^{2}-\left(\gamma_{1} \beta_{1}\right)^{2}\right) \quad, \gamma_{1}{ }^{2}-\left(\gamma_{1} \beta_{1}\right)^{2}=1 \\
& =\underbrace{\frac{2 \pi m_{e} r_{1} u_{1}}{e c}}_{k_{0}} \xlongequal[T]{[\mathrm{kgm} / \mathrm{C}]} \frac{\frac{e c}{2 \pi} \frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau}{ }_{\left[\mathrm{Cm} / \mathrm{s}^{2}\right]}}{\underbrace{2 \pi}} \quad, T=\frac{e \mathrm{c}}{2 \pi} \frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau}{ }_{\left[\mathrm{Cm} / \mathrm{s}^{2}\right]} \text { (one particle) }
\end{aligned}
$$

or
$=\underbrace{2 \pi m_{e} r_{1} u_{\left[\mid k m^{2} / s\right]}}_{h} \xlongequal{\frac{\mathrm{~d} \log \gamma \beta}{2 \pi \mathrm{~d} \tau}{ }_{[/ s]}}$

$$
, v=\frac{\mathrm{d} \log \gamma \beta}{2 \pi \mathrm{~d} \tau}{ }_{[/ s]}
$$

And the space component is

$$
-\mathrm{i} \frac{2 \pi u_{1}}{e \mathrm{c}}\left(m_{e} r_{1} \gamma_{1}, 0, \mathrm{i} m_{e} r_{1} \gamma_{1} \beta_{1}\right) \times \frac{e \mathrm{c}}{2 \pi}\left(\frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau} \underline{\gamma_{1}}, 0, \mathrm{i} \frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau} \underline{\gamma_{1}} \beta_{1}\right)
$$

$=-\mathrm{i}\left(0,-m_{e} r_{1} u_{1} \underline{\gamma_{1}} \cdot \mathrm{i} \frac{\mathrm{d} \log \gamma \beta}{\mathrm{d} \tau} \underline{\gamma_{1}} \beta_{1}+\mathrm{i} m_{e} r_{1} u_{1} \underline{\gamma_{1}} \beta_{1} \cdot \frac{\mathrm{~d} \log \gamma \beta}{\mathrm{~d} \tau} \underline{\gamma_{1}}, 0\right)$
$=(0,0,0)$

Therefore, we get $P V=k_{B} T=h v$.

(Example 1)The one particle calculation

$T=e c \sum_{\text {mean }} \frac{\mathrm{d} \log (\gamma \beta)}{2 \pi \mathrm{~d} \tau}{ }_{\left[\mathrm{Cm} / \mathrm{s}^{2}\right]}=e \mathrm{c} \sum_{\text {mean }} v=e \mathrm{c} \frac{v_{0}}{2.82}, v_{0}$ is a mode value.

The calculation of $v=\frac{\mathrm{d} \log (\gamma \beta)}{2 \pi \mathrm{~d} \tau \quad} \quad[/ s]$
When $T=e \mathrm{c} \frac{\mathrm{d} \log (\gamma \beta)}{2 \pi \mathrm{~d} \tau}=273.15(K)$, then
$v=\frac{\mathrm{d} \log (\gamma \beta)}{2 \pi \mathrm{~d} \tau}=5.68371 \times 10^{12}{ }_{[s]}$
And $\beta_{1}=\frac{v_{1}}{c}(=0.00729735), \gamma_{1} \beta_{1}=\frac{\frac{v_{1}}{c}}{\sqrt{1-\left(\frac{v_{1}}{c}\right)^{2}}}(=0.00729755)$,
then $\frac{\mathrm{d} \gamma \beta}{2 \pi \mathrm{~d} \tau}=\gamma_{1} \beta_{1} \nu\left(=2.60608 \times 10^{11}{ }_{[s]}\right)$
$\boldsymbol{f}_{\left[k g m / s^{2}\right]} L_{4 m]}$

$=6.62607 \times 10^{-34}{ }_{\left[\mathrm{kgm}^{2} / s\right]} \times 5.68371 \times 10^{12}{ }_{[s]}=3.76607 \times 10^{-21}{ }_{\left[\mathrm{kgm}^{2} / \mathrm{s}^{2}\right]}$

(Example 2) The kinetic energy

By the formula $\mathrm{d} E_{J}=\boldsymbol{f}_{x} \cdot \mathrm{~d} x=\mathrm{c} \boldsymbol{E} \mathrm{Ed} \tau_{[J]}$, we transform to the matrix.

$$
\mathrm{d} \vec{E}_{J}=\left[\begin{array}{ll}
f_{t} & \\
& \underline{\underline{\boldsymbol{f}}}
\end{array}\right]^{-}\left[\begin{array}{ll}
\frac{\mathrm{d} \mathrm{~d} t}{\mathrm{~d} \tau} & \\
& -\frac{\mathrm{d} \boldsymbol{r}}{\mathrm{~d} \tau}
\end{array}\right]^{+} \underline{\underline{\mathrm{d} \tau}}
$$

Fig. 7. The image of a particle.
$=\left[\begin{array}{cll}-\frac{2 \pi m_{e} u_{1} \mathrm{~d} r}{e c{ }_{k_{B}}^{[k g m / C]}} \xlongequal{\underbrace{}_{T}} \cdot \frac{e \mathrm{c}}{\gamma_{1} \beta_{1} \frac{\mathrm{~d} \gamma \beta}{2 \pi \mathrm{~d} \tau_{\left[C \mathrm{~cm} / \mathrm{s}^{2}\right]}}} & \\ & 0\end{array}\right]^{+}$

Then the time component is
$\mathrm{d} E=\xlongequal[k_{k_{B} T}]{\boldsymbol{f}_{\left[k g m / s^{2}\right]} \mathrm{d} L_{[m]}}=\xlongequal[k_{B}]{\frac{2 \pi m_{e} u_{1} \mathrm{~d} r}{e \mathrm{c}{ }_{[\mathrm{kgm} / \mathrm{C}]}} \xlongequal{\left[\mathrm{c} \frac{\mathrm{d} \log \gamma \beta}{2 \pi \mathrm{~d} \tau}{ }_{\left[C \mathrm{Cm} / \mathrm{s}^{2}\right]}\right.}}$
$\therefore \frac{\mathrm{d} E}{\mathrm{~d} \tau}=\left(f_{\left[k g m / s^{2}\right]}, 0,0\right) \cdot\left(\frac{\mathrm{d} L}{\mathrm{~d} \tau}, 0,0\right)=\left(2 \pi m_{e} u_{1} \frac{\mathrm{~d} r / s]}{\mathrm{d} \tau_{\left[k g m^{2} / s^{2}\right]}}, 0,0\right) \cdot\left(\frac{\mathrm{d} \log \gamma \beta}{2 \pi \mathrm{~d} \tau},[/ s] \quad, 00\right)$
$=\left(m_{e} \mathrm{c}^{2} \gamma_{1} \beta_{1} \frac{\mathrm{~d} r}{\mathrm{dc} \tau}, 0,0\right) \cdot\left(\frac{1}{\gamma_{1} \beta_{1}} \frac{\mathrm{~d} \gamma \beta}{\mathrm{~d} \tau}, 0,0\right)=\left(m_{e} \mathrm{c}^{2} \frac{\mathrm{~d} r}{\mathrm{dc} \tau}, 0,0\right) \cdot\left(\frac{\mathrm{d} \gamma \beta}{\mathrm{d} \tau}, 0,0\right)$
$=\left(m_{e} \mathrm{c}^{2} \gamma_{x} \beta_{x} \frac{\mathrm{~d} \gamma \beta}{\mathrm{~d} \tau}, 0,0\right)=\frac{1}{2} m_{e} \mathrm{c}^{2}\left(\frac{\mathrm{~d}\left(\gamma_{x} \beta_{x}\right)^{2}}{\mathrm{~d} \tau}, 0,0\right)$.
$\therefore E(=P V)=f_{\left[k g m / s^{2}\right]} L_{m]}=\frac{1}{2} m_{e} \mathrm{c}^{2}\left(\gamma_{x} \beta_{x}\right)^{2} \fallingdotseq \frac{1}{2} m_{e} v_{x}^{2}$ which is one way quantity.

4. Conclusion

The electron is move at the resonance point which is expressed by the angular moment (or Planck constant) of the electric field.

Temperature is the frequency of light which has been caused by collision of a particle.

References

[1] Y. Takemoto, A Gauge Theory on the Anti-de Sitter Space, Bull. of NBU, Vol. 34, No. 1 (1993-Feb.) pp.99-115.
[2] Y. Takemoto, New Notation and Relativistic Form of the 4-dimensional Vector in Time-Space, Bull. of NBU, Vol. 34, No. 1 (2006-Mar.) pp. 32-38.
[3] Y. Takemoto, A New Form of Equation of Motion for a Moving Charge and the Lagrangian, Bull. of NBU, Vol. 35, No. 1 (2007-Mar.) pp. 1-9.
[4] Y. Takemoto, S. Shimamoto, The Gravitational Force And The Electromagnetic Force, Bull. of NBU, Vol. 43, No. 1 (2015-Mar.) pp.1-12.
[5] S. Shimamoto, The g Factors and the New Physical Constants, Bull. of NBU, Vol. 44, No. 1 (2016- Mar.) pp.1-12.

