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Abstract

The purpose of this paper is to discuss the time component of an electromagnetic Feld, and to
have an advanced argument from the electromagnetic theory to the general theory of relativity.
The second purpose is to show that “the general theory of relativity” and “the Electromagnetic

and Gravitational theory” leads to the similar formulas.

The special theory of relativity is based on the Lorentz transformations and two postulates.
The Lorentz transformations are consisted of rotations in Minkowski space. Anti-de Sitter space
appears to be a rolling up a Minkowski space which has constant negative scalar curvature, Vice
versa, tangent space of the anti-de Sitter space is Minkowski space.

Therefore we stand in the position that the anti-de Sitter space is the space which we live in.

Then we are on a same ground as the general theory of relativity.
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1. Preliminaries

1.1 The matrix-vector, calculation and its image

We identified the four-dimensional vector (ct, %3 2}TeR*® (Minkowski space} with the Hermitian matrix.
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ct
-

Let us call this expression (1) of vector a matrix-vector.

)e XeM(@2O)/X =X){r}=(ctxyz)"cR"? (1)

ct+x y+iz
y—iz ct—x

Note that this expression has a product between two matrix-vectors with simple matrix calculation.

ct ct’ _|ctet'+rer’ @)
r r’ cir"Hret’—dlrxre)

I

The underlined sections of expression (2) means that a single-underlined r-r’ is scalar product and a double-
underlined 77’ is vector product.
This expression (2) has two features, one is the functionality as matrix and the other is the simplicity as vector.
Furthermore these calculational images are as follows;
From expression (2), the matrix-vector expressed as
Time component (one-dim. )

Space component (three-dim. )

Hence, e.g. the images of the time component

ahadil & |* b
Al =B

The images of the space component

. .| b a b
B+Ab—iA xB is ;
G ) SVES] N 1Y

where, @,0,A, B are arbitrary vectors. The arrows and bold arrow are their map transformations methods for the
imagés of time component and space component.
This means that the scalar product and the vector product are not independent. Therefore there are closely con-

nections under the matrix product.

1.2 The Lorentz form and the figure of the imaginary angle ©
When a particle moves to the ¥-direction at the speed »» = ». The speed ¥ is a scalar, then we have the following
relation:

ct' =y (ct—Bux)

v
x'=y(x—pB:ct =
7(x—8 )_ T=HTU=%=CUS]]®- yﬂx=%=+=sinh®.
y=y !1—(1) /1,(L)
C C
2=z

This Lorentz transformation has the representation of matrix-vector such as
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ct"+x" v +iz’ " y(1—=8:)(ct+x) y+iz
Y —iz' ot —x') y—iz 7 (1+8:)(ct—x)

i —y- 0 ct+x y+iz\[ye—y- 0
0 ye+y- [\y—iz cf—x 0 ¥+ +7-

where 7+ = /(r+1)/2 = cosh(©/2), y- = /(y—1)/2 =sinh (6/2).

Therefore,

_ C 1
T ct
]: { ] y70=7-10
L -7 r

0

(Cf. signature ™" s of both upper sides correspond to the contravariance of vectors).

r(=x) i
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B=tanh©®

Arbitrary simultaneous reach surfaces

ct

The future light cones
The past light cones

Solid aqua line Solid yellow line

Fig. 1 The figure of the imaginary angle ©.

IFigure 1 shows a schematic of the figure of the imaginary angle ©, The four null values in the Minkowski metric
are shown in the four solid lines in Fig. 1. The lines are called null lines. As to the figure of ©, when the speed
Jof —tanh © is constant. Then by the formula det/dr = ccosh @, dx/dr = csinh@. We can put any point
B(ct cosh®,ct sinh @) by using the ¢t and ©.

Then the arc length L on the hyperbolic line from point A(ct, 0} to point B is

I :S° 7—5_]*-)2— det \yg_ o S Jeosii B Bt Od 0=t S 40 = 10
- o de de 0 0 !

(Cf. The arc length of the circle (x,y)= 7 (cosf,sind) is

g R TR
L={’ (%) +(g_g) a6 =7’ Vsin?0 tcos’0do = 1§ a0 = r0)
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Fig. 2 The anti-de Sitter space.

We keep this circumstances and roll up this Minkowski space such as closing the point = +c0, = —0 tp each
other. The conservation of their simultaneous reach surfaces and null lines on Minkowski plane accords f = oo, Tt
is conceived of the image of an anti-de Sitter space. Figure 2 shows a schematic diagram of the anti-de Sitter space.

Hence, we get the anti-de Sitter space of which tangent space is the Minkowski space.

1.3 Maxwell's Equation and wave equation
We introduce the time-component E: in the electromagnetic field E—icB, then we get the four-dimensional electro-

magnetic field for the derivative of the scalar potential ¢ and the vector potential cA as follows:

- - i 6 + +
Ex _ |3 ¢
E—icB ,ar'i —cA
=
‘o . i
x B 7act+d1vu{

— %%ét—— grad¢ —irot cA

where 6/dr = d/dxe\ +d/dye: +0/0zes and d/dct are differential operators. €1, €2, €s are orthogonal basis vectors.

+[ 8 - +[ 0 4

e E T Mactr-arr | s Y olE
3 E-icB| 0 —cA| it

ar . ec

Moreover, we call a scalar density @ = goito/c and a vector density Js/c =pott/c as charge density and current
density stream. & is an electric permittivity of the medium. These components all together of four-dimensional vector
compose a physical quantity.

Therefore, when, ¢ = 0, js = 0, then we get the wave equation.
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1.4 The four-dimensional Coulomb-Lorentz force
The four-dimensional electromagnetic field receives the four-dimensional force on the charge density 2 and the

current density stream Js as follows! 2

E;p+(E—.e'cB)-J?’

E:'%HE—:TCB)-p—i (E—icB)x'%

2. The tension in the electromagnetic field

We have the formula as follows!!! :

I 3 = e =

i + L
dct E _ | (3)
_a —(E+icB) J:
ar ec
in the electromagnetic field [ - (E+icB )] , then the four-dimensional force is
= ic

E—icB

[ﬁ f]_z_ I[p J—}

where we apply expression (3), and we have

¢ [a T

dct
E—iCB} € _a
ar

B E

(EH'CB)]
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. E, :| W-F(]IV(E““iCB) .
E—icB —&E;C:CB)ﬁgrad E—irot(E+icB)
1 Er[gﬁ+div(E+z'cB)]
—(E—im)-[%+grad Eﬁimt(E—PicB)]

_ —icB). 9B L g ;

= (E tc:B){.aCt+dlv(E+acB}]
—E; -{a—(%+grad Ei+irot(E+icB )]
+z‘(E—z‘cB)x[,‘?L’%ﬁ‘?’”-fgrad El+irot(E-I~icB)}

This means that
(i) The time component of the force /i (the variation of energy) is

fi=Ep+i(E—icB )-(j.\-/c)

g (Ec;::i@+gradEr +irot(E+icB )]) .

:E(E,{gf; +d1’v(E+a?cB)]‘(E7z'cB)-{

Moreover this real part is

y (E, (35* +divE)*E-(ﬂJrgradEffrotCB)*CB'(Mﬁ—mtE))
dct det

=g (lf—a—[Ef‘Ez—(CB )2]+(EzdivE7E-grad Ei)—div(E xcB ))

where § = ExcB is a Poynting vector. Therefore, when the field is (i) stationary and (ii) E: =0, then this formula

coincides with the divergence of a Poynting vector.

Fig. 3 Model geometry of the Poynting vector.
Example. This [igure represents the Poynting vector S=ExcB # 0
In this case, the field is stationary and Energy flow is free.

Therefore, divS = E:divE — E-grad E:.
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Because, in this stationary case, we use the formula

E =%+ divcA = divcA, E—icB = —%—gmdrﬁ—imtcA = —gradg —irotcA.

Figure 3 shows a schematic diagram of a model geometry of the Poynting vector.
Then
fi =—Ewp+(E—icB):(js/c)
=c(Eidiv(E+icB)—(E—icB)-{grad Ei+irot(E+icB))})
= e (Eidiv(—gradg+irotcA )—(E—icB)-{graddivcA +irol(—gradg +irotcd )})
=—el[ lp—e(E—icB)[JA=0.
(ii) The space component of the force (the variation of momentum) is

S=Ejslc+(E—icB)-p—i (E—icB)xjs/c

- ((E—icB }{gft +div(E+icB )]4Er v[ﬂ%-%icﬂ-ﬁ—gmdﬂ tirot(E+icB )]
+(E=1cB)x [%ngradEr Seivotll b flt )])

Furthermore this real part is Eyjs/c+E-p—cB xjs/c

=g (E-(%+divE )—i—cB-dich—E; (%ﬁgr&d 7+ —rotcB )

,EX(E cB +rotE)+ (:BX(&'i‘gl'ﬂdE’_rOtCB))

dct dct
N B ) . 0E 5 dcB oE
75( E (act +grad F: rotcB)+ cB x grad E: +E oy E x P +CB><aCt

+(E-divE —E xrotE )+ (cB-diveB—cB % rotcB ) )

where & ((E-divE—E xrotE )+ (cB-diveB—cB xrotcB)) is Maxwell tension.

Hence, when the field is (i) stationary and (i) Er =0, Le. this formula coincides with the Maxwell tension.

3. Electromagnetic gravitational force

For simplicity, the mass “M" is stationary. Then from this potential U= GuM/r, we generate the gravitational

force as the same way as Coulomb-Lorentz force as follows™ :

The gravitational field is

BES oM .
]i[, _a (M) .
—ax 0 ar\

Therefore we get the four-dimensional gravitational force

0 * -
a2 e [:’,ﬂ ]
)| I

+

0
G

CZ

|7
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We call this force electromagnetic gravitation, We set Mg = GM/c? where G is a gravitational constant, then we

get Newton type equations of motion as

d’ct _  Ms (1 di)(i‘?f_...(El)

dez 2 \r de /) dr
L Mor(de ) Mg(r, dr)de
drz =~ 7y ( dr ) h ( dr) dr MEZES E4)
Moreover the metric is Minkowski metric ds? = —dc2-+dr? = —det 2+ de 2+ dy?+ dz?,

In this system of equations, there are all information. We rewrite these equations of motion by the spherical polar

coordinate {# &,¢), that is,

x=rsind cos ¢
y=ysinf sing
z=ycosl
Then we have the metric ds* = — dct*+dr?+#2 (sin® 0 dg? + d#2).

Furthermore the equations of motion are

{E1) diet %(d—r) (M) (the direction of time),

dr? r2 \dr /\ dr
2
(E 2)37 K( de ) 11,{ ?T) (?’ sin Hd—f) ] {the direction of radins),
(ES)%( El{—f) f?( )( d—) (0056 )(r sin 8 = dé ) -+ {the direction of longitude),
treat) Hon

2 d d¢ dr de dg¢ . . .
(E4)— P (r sin & —=— i ){mn L( a7 sind—— e ) (C Y dT-)(f'?) - {the direction of Iatitude),

and the following main equation (Eb)which decides the orbit on the eguator of the Sun in the anti-de Sitter space.

The subscript {real}, the meaning of Symbol( =”is equal to only the real part.
N rea

2 C2 oM ——
(£5)| ——= :( G —%) L 40 = f{coshag - (day Y.
2Me i

Theorem.

The Einstein field equation is Ry — Rgw/2 = 82GTw/c* and the Schwarzschild metric (sclution) is

-1
() ds?= —c2(1—2]f—”)dt2+(1 —%) dr?4r2{sin? #d# 2+ d9?)

2
- — _% . : ; 2 ({qin2 2 2
= ( /1 p dgt) +( — oM, dr) +ri(sin? fdd+da?).
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We take d'ct=/1—2Mgfrdet to detand d'r = 141 2Ma/rdr (o dr as corresponding. Then this melric corre-
sponds to a Minkowski metric,
(B} ds?=—det? 4 dri+v? (sin® §dg*+ dF7).
Therefore, (G )and {£)are two metrics of the same style.
By the same correspondence, the equations of motion (E1)—(F4) and (ED) are very similar to the following ones

(G1)' —(G4)" (G5) of the general theory of relativity.

(G1)y'—— d (d’Ct ) = Me (éj—’--)( d'ct ) (the directicn of time),
de \ dr Mg A dr dr
2./ 1—
Y r
L ] Fi 2
(G 2)’L1(d—’)= —Lf._(d Ct-) +— /1 2Me (rﬁ) +(r Sé}19@> -+ (the direction of radius),
dr \ dr ; \/; oM\ de ¥ ¥ dr dr
T
(G3) = d dg =—— M“ ; B (L20 BY PN Od—¢ ¥ sin @ —— dg ) . (the direction of longitude),
ar \"dr Tar dr dr

(G4) %(7 sin @- d¢ ) % / 172’%7‘;(%)(7 sinﬂ%f—)—( cos @ illqﬁ )( (éi) (the direction of latitude),

and the main equation is

z
1
d= 2
. 1 v ¢t G 1 1
(&5) = s —E

/1 _2Mg_dé ¢ 1—% r
¥ .

{Proof}

From the general relativity theory, the equations of the motion and the main equation are

2Me
dfct _ ¢ [dr)\{dct
(G1) de? 1_‘M2:M‘q (dz’)( clr)
¥

Mg
A2 _ Mg (. 2Me N dot N, FE [fdr
(G2 gz ez~ 72 (1 ¥ )( dr ) +1_2M_c(clr)'
¥

(G d’6 _ _ 2 dr df ——+sin g cos&((l¢) ,

de? r dr dr dr
d*6 _ _2drdd . pd0 dé
(G4) de? T rdrodr coLE g dr dr’ and

1
= 2 5 .
r G e 2Ma ) 1 _.:.%_MG_)
(65)(d¢)*c2 C2(1 r ) rz(l ro )
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We apply the formula (G1}, and obtain Conclusion
(G1)" d (d ct ): d ( \/j det ): E _ ( i{) ( det )+ . oM. d2et The authors generate the gravitational force by imitating the four-dimensional Coulomb-Lorentz force, and inves-
dr | dr dr roodr 5 1~2MG dr /A dr r o de® tigate the similarity and the difference between “the general theory of relativity” and “the Electromagnetic and
¥
M 2M o Gravitational theory”. The following conclusions are drawn:
:riz(tlr)(dut) I (dr)(dct) M d'w \f d'ct ' . . _ . )
\/; oM. \dr dr ql b, \dr \de = - \/;_74: o )( e ) | (1) The authors mention the image of calculation of the matrix-vectors,
¥ ¥ ¥ ; {2} It is shown that the figure of the imaginary angle @ in the Lorentz form.
According to the formula {G2), we get {3} It is demonstrated that the four-dimensional vector product in the electromagnetic field.
ZMG 2 ) ; {4) Tt is put to practical use of the four-dimensional Coulomb-Lorentz force.
(G2 ga(ar) ) (&)Lt |
dr \ dr dz 2 c df ) fl oM, \dr 1- oM di? : (5) The authors mention that the formulas between the general theory of relativity and the electromagnetic the-
4 ¥ ]

ory are very similar.

= )(w H(;—W—)F[(—H)l
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(G4) —— (rsmt?flf) (dr)(qmﬁi (%)(d—f)-i-rsmﬂ({if)
L ~(dr. d¢ s (40 \( dé dr\fdg\ . de \f d
(dz_)(qmﬁ q )Jrrwsﬁ(d )(“dT) 2:,1110(dr)(ﬁ)w”cosg(a)(%)
) i) ) 1)

Consequently, at last from the formula {G5), we know the main equation

f)—i—?‘cosﬁ
T

1 d'& 1 d"}' 2 ¢t G 4 1

G5}’ _ ) Le 1 1 0

{C5) \/W d¢ | = 2Ms |\ d¢ CTICT oMy (QED.)
, ¥ ¥

This means that from two different ways, we get the very close results® 4],

The little difference between the formulas are covered by the imaginary part of (£3), (E4),




