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Abstract

The Bohr atomic model is well-known for a hydrogen atom. The relation between an electron orbit
and the light emitted from an atom was mostly solved by the Bohr atomic model. It is the purpose of
this paper to show the Maxwell equation and an orbit for the equation of motion.

Authors derive the equation of motion of an electron by the modified Maxwell equation and try to
improve the Bohr atomic model with the theory of relativity. We draw a better approximation as the

result.

1. Introduction

Since the finding of " the matrix vector and the Lorentz form ", the method has been applied to the
Maxwell equation. We get the modified Maxwell equation including the time component. The
authors extended the scope even to the " Electromagnetic and Gravitational Theory " and the " New
Concept and Basic Tools " which treat the movement of planets and the Lorentz transformation. This

time, an extended atomic model will be presented.

2. Preliminaries
2.1 The Maxwell equation by the Lorentz form
The existence of the time component £,  in the electromagnetic field E —icB , the

four-dimensional electromagnetic field for the derivative of the scalar potential ¢ and the vector

potential cA are as follows:
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Especially we consider the 4-dimensional potential ¢(x,y,z)= R ( & is electric
e r

permittivity of the medium ) and A(x,y,z) =0 which are caused by the stationary positive charge

Thus, the electric field is
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Furthermore, the magnetic field and time component are
B=0 and E, =0

In this case, the electric field of the 4-dimensional is the same result as using the 3-dimensional

potential V(x,y,z)= _LQ
4re r

2.2 The 4-dimensional Coulomb - Lorentz force

The 4-dimensional electromagnetic field receives the 4-dimensional force on the charge density p
2]

and the current density stream j as follows [!}[
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where e is an electric charge, ey is a relativistic charge, eyB is a stream charge and € is an "

en bloc ".
Then
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The spatial force is
r-t=2(0), iz 2 (0),,
cor\r cor\r

, €, 1s permittivity of the free-space medium,

is the Coulomb constant, k=
47280 0%r

Here, k=

&, is relative permittivity of the dielectric medium.



Moreover, we get the formula between the moment and the impulse that the 4-dimensional force is

obtained by integrating time.

Tdet
dr meB] o | f
dr
dr
Furthermore, S =m 4 |dr
f dt dr
dr ,
Tdeo T a7 Tde ] Tdet
d dr d dr dct d dr dr d dr do
m— =m— —tm— —tm — —
dr ﬂ dct d_r dr dr di dr do dL dr
dr dr dr dr
_ E _
il o e
do dr | dr
dr

The underlined part is null when the center electric charge is stable.

3. The equation of the electron in atom

dzct__keQ r dr dct
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The acceleration vector by the spherical coordinate is
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We can rewrite the coordinate (#,x,),z) by the coordinate (¢,7,6,¢).

t=t
x=rsin@cos@

y=rsinfsing

z=rcosfd

Fig 1 The spherical coordinate.

Theorem 1. The equation of an electron turns around a positive charge.

The relativistic invariant equations of motion by the coordinate are
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The above underlined part is related to the Example 2
The metric is ds® =—dct” +dr’ +r*(sin” 8d ¢* +d &) .

We consider the two-body problem concerned with the nuclear and the electron as in one hydrogen
. V2 .
atom. It is assumed that the electron moves on fixed surface. Therefore, we put 6 = 5 —-1Q. Q is

a parameter that relates to the angle of rotation on the orbit.
Then we change the imaginary parts to the real and get a real coefficient equation.

The metric is ds® = —dct® +dr® +7°(cosh® Qd ¢ —dQ?) . The polar coordinate is (z, 7,2, @)
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Therefore we get an equation of Newton's type.

Theorem 2. The system of Newton's type.
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We translate the above equations of Newton type into the equations of Kepler type.
The metric is ds® = —c’d¢’ +dr* +r*(cosh” Qd ¢* —dQ?)

Theorem3. The system of equations of Kepler's type.
keQ
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(2)'
-+ (the structure of space)
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0'= —I( keQ det sinh Q 3—(/))d Teoeees (the internal rotation)

where (2 means being rotational on the orbit.
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mgc _m 2 .
We call m,cC,y=——=—==e """ energy function.

,/1—(2)2




(Proof)
(1)' The conservation energy(cf. Example 1 below).
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where e is a (extended) potential energy.

(2)' The structure of space.
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Therefore
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(4)' The rotation on the orbit.

From (3)', we can put »” cosh Q% = Ccosh®'(20), 7’ 4 =—Csinh®".
dr dr
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(QED.)

4. The Examples

(Example 1.) The difference of energy between two orbits.

This equation (1)' in this system means the law of the conservation of energy because the energy
function is
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where the underlined part is the kinetic energy and the potential energy.

We consider the case of a hydrogen atom and the surrounding electron orbit is a circle.
2

r . .
5 = O (the circle orbit is) , then
T

By the formula Theorem 2. (2) When
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Therefore we get the orbital radius of electron
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Especially n =1, it is obtained that 7 =

2

(Cf. 7 =5.29166x10"" in classical).
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Moreover the formula of 7, is indicated the limited radius in a circle orbit.
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And this value is obtained also by the Energy function.

2 _ keQ
m.C 2
F(r)(=mcC,)=———=¢ "“’, because
- keQ
mc’r
keQ
\ 1 mc’ keQ ner. 2keQ
F'(r)y=— = ¢ "“"(1- —)=0.
2 keQ  mc°r mc’r
(1-—)
m,cr
2ke
Therefore, the minimum point is 7 = g .
m.C

e
(Example 3.) acceleration.
The electronic movement is mostly determined by the proton electric charge of a central nucleus.

Then its acceleration is
_ {f[ }_
S/
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Fig 2 Schematic diagram of the electric movement.
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Therefore the 4-dimensional force (f,, f., fy, f.) ontheelectronis f, =0
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where @ __ ke ~ is an angular velocity. (Cf. Theorem 1.)
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When radius 7 is a Bohr radius r, we look upon as —, where h is the Planck constant and

e

A, is the circumferential length.
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- <Y  ph=2 ey -

h _
/16 Yy 2 ’ : Vyi2 Vi2 .
1/1—<fy) Jl—(y) Jl—(y)
C C C .

11




We give this value h an another meaning as the angular moment of electron on the Bohr orbit.
2

v
m,c—>
Moreover, P.(=p, y=—"C
- C VYV,
1—-(-2)?
C
P v, Av AV Av, h hv
c= Lo L p="tep="te_—_¢ Thereforeweput E'=cP,=hv, andwe
P c C c c A, c

call this imaginary moment a surrounding frequency energy, where A, =27zr and 27zrv,=v,.

Conclusion

The authors calculate the relativistic energy in the orbit of the electron in atom. These relation
images suggest to us a figure of the electron in atom. We get that the similarity between the Planck
constant and the angular moment and see the relation between the surrounding frequency energy and

the angular moment.
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