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Abstract

The Bohr atomic model is well-known for a hydrogen atom. The relation between an elec-
tron orbit and the light emitted from an atom was mostly solved by the Bohr atomic medel. It is
the purpose of this papér to show the Maxwell eguation and an orbit for the eqguation of motion.

We derive the equation of motion of an electron by the modified Maxwell equation and try to
improve the Behr atomic model with the theory of relativity. We draw a better approximation as
the result.

1. Introduction

Since the finding of "the matrix vector and the Lorentz form”, the method has been applied to the Maxwell
equation. We get the modified Maxwell equation including the time component. The authors extended the scope
even to the “Electromagnetic and Gravitational Theory” and the "New Concept and Basic Tools” which treat the

movement of planets and the Lorentz transformation. This time, an extended atomic model will be presented.

2. Preliminaries

2.1 The Maxwell equation by the Lorentz form

The existence of the time component £ in the electromagnetic field E—icB, the 4-dimensional electromagnetic
field for the derivative of the scalar potential ¢ and the vector potential cA are as follows:
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Especially we consider the 4-dimensional potential é (x,¥,z)= —é% € is electric permittivity of the medium)

and A{x, ¥, z) =0 which are caused by the stationary positive charge 0.

- + il T+ + “To *
E; e 1@ ! 9
[ E—iCB} = € s [ dre ¥ o = Ire j_(;) .

Thus, the electric field is
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Furthermcre, the magnetic field and time component are
B=0and E =0

In this case, the electric field of the 4-dimensional is the same resul

1
Vikyz)= —E?Q'

t as using the 3-dimensional potential

2.2 The 4-dimensional Coulomb - Lorentz force

The 4-dimensional electromagnetic field receives the 4-dimensional force on the charge density # and the
density stream js as follows [ ;

b r

E;p+(E—iciE;)-”%’r

current
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where ¢ is an electric charge, e is a relativistic charge, er8 is a stream charge and & is an
Then

“en hloc”.
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The spatial force is
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Here, k :ﬁ? is the Coulomb constant, &=
]

mittivity of the dielectric medium.

1 L , € Is permittivity of the free-space medium, & is refative per-
ME0EyY

Moreover, we get the formula between the moment and the impulse tl“_lat the 4-dimensional foree is obtained by

integrating time.
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The underlined part is nuil when the center electric charge is stable.

3. The eguation of the electron in atom

d*ct . keQ(r  drdct .
“dr? ErE\y dr ) dr (i)
dir __ keQr (dot \*,  keQ det "
Meqed = "ot 4 ( dr ) | x dr) dr i)

The acceleration vector by the spherical coordinate is

” o '2_ s
4| ot

= ae 2¢8+ 78 —rg?sinf cosd

@ 2¢¢sin f +#8 sin 6+ 2rgf cos 6

We can rewrite the coordinate (%, x,%,2) by the coordinate (£, 7,8, ).

=1
x=vsinf cose
y=ysind sine
z=rcosd

Fig 1. The spherical coordinate.

Theorem 1. The equation of an electron turns around a positive charge,

The relativistic invariant equations of motion by the polar coordinate are
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d’ct _  keQ dr dct
(1) se dr? P dr dr

d?’ kel { det e | dON e [ o de #
(2 m crz<dr)+f(7clr) r (7bmgdr)

df,deN_ . keQ det e dr {48 dg de
(3)m (7* dr)_ 1C2?,£ (751 G dr) oy dr (r dr)—i—mgcmﬁ ar (rsmﬁ lr)

“dr
de ke(d det me dr( . pdel dg \ de
)71 ( dr) Ty dr (r&.m@ clr) mecosﬁ( e )dr

d
(4) #1e I (r sin § —— I
The ahove underlined part is related to the Example 2.

The metric is ds? = —dct2+dr2+¢?(sin? #de?+ dd?).

13

We consider the two-body problem concernad with the nuclear and the electron as in one hydrogen atom. It is

assumed that the electron moves on fixed surface. Therefore, we put ¢ =g——i£2. ) is a parameter that relates to

the angle of rotation on the orbit.
Then we change the imaginary parts to the real and get a real coefficient equation,

The metric is ds? = —dct2+dr?+#2 (cosh® QdgZ—d0?). The coordinate is (£, 7,Q, ¢}

ct=ct

x=r coshQcos e
y=7#coshQsing
z=1rsinhQ

Therefore we get an equation of Newton's type.

Theorem 2. The system of Newton’s type.

dict . keQ dr det
(1) dez = & dr dr

d?r _ keQ {det \*, me dp \* [ dQ
(@yme 7 = oz ( dr ) Cr {(7 cosh O, ) ( dr )

d{ ,da heQ det de de
(3)m “dr ( dr ) (c Be dqr sinhQ dr )(r%oshg dr)

d de\_(keQdet o1 nde z@)-
i (f’ costhz_) (czr"* o #te sinh Q) dr)(r & )

{4) me

We translate the above equaticns of Newton type into the equations of Kepler type.
The metric is ds? = —c2df? +d#? +#2 (cosh?*Qde®— dG?).

Theorem 3. The system of equations of Kepler’s type.
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(1) mec cgf = m.cCoe'&cg_" *(the conservation of energy)

LA, keQ  det det
(2) 12 (7 sishQ) = (mczrz 5 )(t:mhn rcoshnﬁ—t)coshﬂ( dr)

---(the structure of space)
[3]'?‘3I(? coshﬂdd—P) (f’%) l C?--+(the law of equal areas)

(4) r*coshﬂg—— C cosh® (= 0), rd—?-= ~C sinh &
=—f ( m’f‘iﬁi 7 %— sinhn%;_ﬂ deoseee (the internal rotation)

where Q means being rotational on the orbit,

- 2 -JE&-
We call mecCy= ———¢ ™" enegy function.

(Proof)
(1)* The conservation energy (c¢f Example 1 below).

From the equation

d3ct Q dr det
Pdrr T ekt dr dr

(g)“azd= keQ dr.ﬂrlog(dct) aq_(ﬂ) log(dct) o keQ

dr dr? mectr* dr der T\ meCly der MaCly

k@
ddz‘:*_gm ! m=€t°l?"r "
mect —
mmzd—t(=_.~7)_mcﬁe‘°em?' mec.Coemstr » ce%=Co

1—(-‘-’-
c
Therefore, we get the kinetic energy

e
m.c%f = mecCoe?vtf?F 1y

b
where emer is a (extended) potential energy.

(2)’ The structure of space.
By then (2) x sinh Q@ +(3) x—:;coshg,

:jl 2 sinhQ +di< :iig)cuahﬁ + fjl: ((én)coshﬂ

o _(_heQ dct de det\ 1( da\ .
(fmc%’ dr )(tanhﬂ ¥ coshQ—— dCf)COShQ( dr) 7(:"&;—) sinhQ)

holds.
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‘Therefore, the structure of spéce is

ci‘*:ﬂ” sinhQ )=—- { (?'Slnhﬂ)} c‘]:lr [dr sinhQ +rcoshﬂiiﬂ]

dr da dQ d {, dQ
aooshﬂd + sin hnd ( dr )+dr(rﬂr)m8hﬂ

- Lezgiﬁ tanh@ —r coshe2-32 )oo shQ (dc{) @
mectyt dr det

{3)" The law of equal areas.

By the (4)(#* cosh S&- ) @)<(r42)

de d de do d (,.dQ)\_
We get rzcoshQE--d-(rxcoshﬂ ) palios i (f‘ d:)_o

Therefore
de \* { dQV|_
1’2[(?' coshﬂy) —(rF) I— C2,

(4)* The rotation on the orbit.
From(3) , we can put #* mshn%f_i= C cosh@® (= 0), r”% =—C sinh®.

,20Q dQ
Then —‘i?-wa—m = —tanh@ holds, (Cf. % =tanh 6.)
7% cosh&) 3%

Therefore, from the equation {3) + (4), we get
—c%(sinhe'+msh®')= ( keQ dot g 49 = )(coshe'+sinh9'}.

mecir? dr

de* _ _(_ke@ dct 4590 .

dr (mgc’?’ dr dr )e
.de _d _ [ _keQ dct d¢) ,
Tar T dr e’ = (:ww::”r’l dr —sinh{2 dr @)

The internal rotation is Eq, (4).

e ke det 4 nde s .
S8 = ‘r(meczrz “d —sinhQ -2~ )dr. 4)

(QED.)

15
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4. The Examples _
{Example1.) The difference of energy between two orbits.

This equation (1)* in this system means the law of the conservation of energy because the energy function is
2 e
ecCo = J—"—ze_m r
=0
c

oo Y2 )

macz-r 2\ .oty

%mw“—

e,
¥

= mect+

where the underlined part is the kinetic energy and the potential energy.
We consider the case of a hydrogen atom and the surrounding electron orbit is a circle,

By the formula Theorem 2. (2) When F = 0(the circle orhit is), then

e &7 _keQ[dct ), me de dQ
ez =~ c’r’(dr) r [(r(mhg?) ( dr)

Therefore we get the equation of the balance:

E% (The Coulomb's law) = .__{ (?“ coshQ 3'; ) ( T r }(‘I'he acceleration)

_mef d®\ _ mev?
(r dct) T _cir (A).
Then the energy function on the circle orbit is mecCs ="—~%e ;ff e m,@-i@.,.
1-—(1
<

(Example 2.} the minimum radius.

v
We take the relativistic moment P= , then the quantum condifion is a
(%)
c
xh ( Un )
omre =de=— Y VNS where v, vw is depend on #. (B).

Weln
Then [WﬂCﬁkﬂn]z = (ﬂh]a(cz —ﬂng) 4

Moreover, this formula is substituted for the (A) va? = ’ie? ,
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k"% =(nh )2(<$= —EQ)

2
Then (2mrucime) s s

keQ(2mem: )t —(nch) 2 mers +keQ(nh)2=0,
Therefore we get the orbital radius of electron

(nch)me = /{(nch)*m.}" —QOm)*keQwh)e

e =

2le Ercﬂh
{nh}’(1+ 1- Mﬂm 2) g
= (o2 inclassica])
2(2m)2 keOm. VT or Y ke O :

h2| 1+ 1—(~“"1T‘?Q)2)
2{2m ) keQm.

Especially # =1, it is obtained that 4, = = 529137856 X 104

(CL. r. =5.29166 x 10" in classical)

= h*
= er ) keOm

Moreover the formula of #» is indicated the limited radius in a circle orbit.

M)zz 1 then n= MkeQ 1

That is to say, when the case ( e he 535165 therefore

(nh)* _ ZkeQ _ .
= S ey~ e = 8% x10% (the limited radius).

And this value is obtained also by the Energy function.

F (#)(= mecCa) =%e‘¥k§7. because
T macty
e 1 e C? ke Wr( _ MBQ):
Firi=1 keO Smectrtt "\ ey )7
(l mc’r)

Therefore, the minimum point is r = ;f’%:,Q s

{Example 3. ) acceleration.

The electronic movement is mostly determined by the proton electric charge of a central nucleus.

17




18 Yoshio TAKEMOTO, Seishu SHIMAMOTO

Then its acceleration is
] (0,v,,0)
fi ».
f_ Y "v
(x,0,0)

Fig 2. Schematic diagram of the
electronic movement.

o ol w o, dr dy  dy

C “do ¢ Tdr dof T der

]
-

ke e Uy ¥
,"‘@Ex = ZQ :L:T’ﬁcvy'—y .
¥ ¥ r
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¢ [ (Exy, 0,—1Ex7B )

Therefore the 4-dimensional force (i, 4,/5,5) on the electron is ff = 0.

fi = By — kezQ 1 _ Mty 1 _ ety ’Uy:__PX_EliD_ p—_ Mty
O =D M E=C M O
c c C c
ﬂi mgﬂ_yz
f=0 fim—eBpfe—ife2 e i Tlc w_ _ple p._. meb b
re Y o, \E T dt ALY
) () ()
[ [ c
where %‘?:%’: %isanangular velocity, (Cf Theorem1.)
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Uy
. . . e Cm h .
When radius 7 is a Bohr radius 1, we look upon P (= py)= S = 45 where h is the Planck constant

Py :
and A« is the circumferential length, 4/ 1_(?)

e ly e Uy _ Zm¥inety

R A o e

We give this value h an another meaning as the angular moment of electron on the Bohr orbit.

2

v
e T
c

&7 — ﬂzUaP:A!VE.L
I c e A

b
/]8

Moreover, P, (: py%l’) -

Wy __ AeVe P
.3

= h% Therefore we put £’ = c¢P: = hve and we call this imaginary moment

a surrounding frequency energy, where A = 2ar and 2@ = o

Conclusion

The authors calculate the relativistic energy in the orbit of the electron in atom. These relation images suggest
to us a figure of the electron in atom. We get that the similarity between the Planck constant and the angular moment

and see the relation between the surrounding frequency energy and the angular moment.
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