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Abstract

This paper provides the matrix which contains the gravitation and the electromagnetic field. We

explain that the similarity or difference between the gravitation forces and electromagnetic force.

1. Introduction

1.1. Definition of the imaginary charge and its derivatives

The magnetic charge m is a pure imaginary part of the complex charge as ie m , then its

potential (1), magnetic field (2), Maxwell equation (3) and the Coulomb-Lorentz force (4) are

.

1 ii i
ic ( )


   

                                  

r r
A 0 0

0 0

m
m

(1)

i c i
ic ic

            
            E B r A

tB t

.

i i c
c

ci i c
c





      
     

A

A grad rot A

div
t

t

(2)

.

i c i
ic

            
           0 r E B

tm t B
(3)



2

,

i i
ic

           
          F E B 0

t tF E e m
(4)

where i i  e m e m means a complex conjugate.

1.2. The matrix expression of the mass and its fields like the magnetic charge

It is the same as that of the magnetic charge m . We put the mass M as iM which is a pure

imaginary number, because the two masses has the power of absorption. Then its potential (5),

(magnetic) field (6), Maxwell equation (7) and the Coulomb-Lorentz force (8) are

.
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where i iM M  means a complex conjugate.

2. The matrix which contained the electric charge and the mass simultaneously

2.1 The electric charge and the mass in the same matrix

We put the electric charge e and the magnetic charge m as ( i )1 te m which is the time

component and the mass (1 ,1 ,1 )x y zM which is the space component, which means that the

magnetic charge is on the complex conjugate and the mass is on the space conjugate as follows:
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2.2. Maxwell Equation and the temporary unit

(i) The temporary unit of the electron

By the Coulomb force 0
2

k eqF
r

 , we temporarily define the charge which has the capability to

generate an electric potential as [ ]w Cwe , [ ]w Cwq instead of e , q and 0
2 2

w wk eq e qF
r r

  .

By the equation of motion
2

2

d
de e
rF m m
t
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charge which has the difficulty [ ]e kgim m of moving to the electromagnetic field.

More specifically, the symbol [ ]w Cwe is the physical meaning that the quantity [ ]w kgwe can

accelerate the mass [ ]e kgim by the value
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(ii) The temporary unit of the mass
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2.3. The Coulomb and the Gravitational Force of “the charge and the mass”.

We defined a source
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But this is not the same size matrix. Therefore we take the variation method as follows1):
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Concretely when the particle is not move, the potential (9) and field (10) are
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Additionally, we calculate the above trace (13).
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And the electric and the gravitational field is ( , )E q M
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0 0 0 0 0 i 0 0 0 0 0 0 0 i' '(i i )
0 0 0 0 i 0 0 i 0 0 0 1 0 0 0c c
i 0 0 0 1 0 0 0 0 0 0 0 i 0 0

      
                   
          
     

w w w w

x x
x xM M M MTr

x x
x x

' '4 4
c c

  w w w wM M M Mx x .

Therefore the space component

0
.

' 'd( ) ( ' ( ic ) ' i( ic ) ' ) 4( 3 )
dc c c c c c

          
u uPF E B E Bge ge ge w w w w

get w ge ge w ge ge w

u q q M MTr Tr E M q M

As a result, this shows that the universal gravitation has 3 times as the much relation as

electromagnetic power; we think that this reason is that the time is one-direction and the space is a

three-direction.

3. The planet and atom

3.1. Angular momentum

The hypothesis about electron arrangement (orbit).

"The electron which is not excited is arranged one by one so that it may become a fixed angular

momentum (the amount of resonance)."

Example 1 (Hydrogen nucleusH ) the ionization energy is 13.598 VHE e
We put the circular orbit radius 1r of the electron which is not excited. Then the speed is

2
0 01

2
1 1

( )
c ce

R k ev
r m r

  by the balance equation
2

2 01
1 0 2( ) ( )

c ce

k evr R
m

  . Therefore the momentum

is 2
1 1 1 0 1 0c ( )

2e e e
hm rv m r R m rk e


     where 2
34

[ / ]
1.05457 10

kg m s



  .

Example 2 (Helium nucleusHe ) the ionization energy is 54.416 V( 4)   HHe
E e E

We put the circular orbit radius 1
1 '

2
rr  , 0 0' 2R R of the electron which is not excited. Then
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the speed is 10 01

1 1

2'' 2
c ' c
  

vR Rv
r r

by the balance equation
2

2 01
1 0 2

2''( ) '( )
c ce

k evr R
m

 

02R .

Therefore the momentum is 1
1 1 1 1 1' ' (2 ) ( )

2e e e
rm r v m v m rv    .

Example 3 (Lithium atom core 2Li  ) the ionization energy is 2 122.451 V( 9)   HLi
E e E

We put the circular orbit radius 1
1 ''

3
rr  , 0 0'' 3R R of the electron which is not excited. Then

the speed is 10 01

1 1

3'''' 3
c '' c

  
vR Rv

r r
by the balance equation

2
2 01

1 0 2

3''''( ) ''( )
c ce

k evr R
m

 

03R .

Therefore the momentum is 1
1 1 1 1 1'' '' (3 ) ( )

3e e e
rm r v m v m rv    .

Moreover, it can be concluded that the point 1r
n

of resonating according to the strength of an

electric field is near in inverse proportion to the number n of the protons in a core. Thereby, a

hypothesis can be prepared, saying, "The angular momentum of non-excited electron is constant

which was not depended on the number n of the protons in a core."

3.1.1. The electron around the atomic nucleus

Here, we define the resonance value 2 2
161 1

[ /( )]
[ ] [ ]

6.58205 10
1


 

  

e

kg m C s
C C

m rvk
e

as the point of

the resonance instead of angular momentum 1 1 em rv in the hydrogen atom, moreover this

resembles the resonance of the whistle, and the resonating point becomes near in proportion to the

value of a central electric charge q.

3.1.2. The planet and the satellite for solar system

In the case of the planet which goes around the Sun, the resonating point becomes far in

proportion to the mass M of a central star, therefore we define the resonance value

2

1 1

[ /( )]

i
s

m kg s

m rvK
m M 




(where m is the mass and im is the inertial mass), as the point of the

resonance instead of angular momentum, moreover this resembles the relation of the size and pitch



10

of a drum.

3.1.3. The calculation for the resonance value K
It takes into consideration that universal gravitation has 3 times as much relation as

electromagnetic power in the last of the section 2. We take a standard value of the resonance

2 2 2
15

[ / ] [ /( )]
3 1.97461 10 


   s C kg m kg s

K k in the planet and each point of the resonance is

measured as follows:

Example 4 The resonance value 0 
rvK
M

of the planet around the Sun

We calculate the resonance values of the Venus, the Earth and the Mars as follows;

(i) The orbital speed of the Venus is 4
[ / ]3.5020 10 m sv   and the distance between the Venus

and the Sun is 11
[ ]1.08204 10 mr   .

Then we get the value 2
15

0 [ /( )]
[ ]

1.90516 10
m kg s

kg

rvK
M




   .

(ii) The orbital speed of the Earth is 4
[ / ]2.9783 10 m sv   and the distance between the Earth and

the Sun is 11
[ ]1.49598 10 mr   . Then we get the value 2

15
0 [ /( )]

[ ]

2.24013 10
m kg s

kg

rvK
M




   .

(iii) The orbital speed of the Mars is 4
[ / ]2.4128 10 m sv   and the distance between the Mars and

the Sun is 11
[ ]2.27942 10 mr   . Then we get the value 2

15
0 [ /( )]

[ ]

2.76518 10
m kg s

kg

rvK
M




   .

By (1), (2) and (3), the standard value of the resonance 2
15

[ /( )]
1.97461 10


 s m kg s

K is

between the Venus and the Earth.

In order to take out a better point, although there is no basis in particular. But we take the value

2
15

[ /( )]
2( ) 2.42 10

2m m kg s

Venus Earth Mars
K mean 






    (no reason), 2
1 m

Mr K
G

 ,
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1
m

Gv
K

 as a point of the resonance.

This formula is no reason, but this is near the value 2
15

[ /( )]
2.23 10

m kg s



 by a method of least

squares to resonance among Jupiter to Pluto. Therefore we get the next table 1.

Table 1

Ratio of the resonance point for the planet.
Mercury (mean) Jupiter Saturn Uranus Neptune Pluto

Orbital radius[m] 5.79E+10 (1.75E+11) 7.78E+11 1.43E+12 2.88E+12 4.50E+12 5.92E+12
Orbital speed [m/s] 4.79E+04 (2.76E+04) 1.31E+04 9.64E+03 6.79E+03 5.43E+03 4.74E+03
Resonance[m2/(kg ・s)] 1.39E-15 2.42E-15 5.11E-15 6.92E-15 9.82E-15 1.23E-14 1.41E-14
Ratio of resonance 0.58 1 2.11 2.86 4.06 5.08 5.82

The value of the set (Venus, Earth, Mars) is 1, then the value of Jupiter , Saturn, Uranus,

Neptune ,Pluto is about 2, 3, 4, 5, 6 respectively.

We compare two resonance value the mean value and the standard value, and its ratio is
15

[ ]15

2.42 10( ) 1.225
1.97 10i s

m meanR
m K






   


.

This is equivalent to having estimated the weight of the central star R times greatly. And the

mercury is very closed to the Sun, therefore its orbit is elliptic and its rotation is affected in

revolution.

Example 5 The resonance value 0 
rvK
M

of the satellite around the planet

We calculate the resonance values of a satellite around the planet as follows;

By two formula 1 1rvK
M

 (resonance) and 2
1 1rv GM (balance equation in the circle orbit), we

get the expected the minimum orbital radius of the satellite 4 2 2

3

[ ]2
1[ ] [ /( )]

[ /( )]

kg
m m kg s

m kg s

M
r K

G


 .

For example, the case of the Earth and the moon, the orbital radius of the moon is 3.84×108 m,

the orbital speed is 1.018×103 m/s and the Earth mass is 5.977×1024 kg. Therefore the position of the

satellite expected is 2 5
1 4.27614 10

R M
r K m

G


 ≒ , where the mass of the central star is being

corrected in R double here. This value 5
1 4.27614 10≒r m means that it's inside the equatorial

radius 6378000 m of the Earth. At other planets, the expected radius 1r is inside the equatorial
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radius except for Jupiter only.

The ratio of the resonance point can change by the square root of the radius, because

1 1 1 1

1

rv r rGGR MK
R M R M r R M


  

  
. Therefore we get the next table 2.

Table 2

Square root of ratio of the radius for the planet.
Earth Jupiter Saturn Uranus Neptune Pluto

Mass[10^24kg] 5.977 1899 568.8 86.67 103 0.012
Expected r1[m] 4.28E+05 1.36E+08 4.07E+07 6.20E+06 7.37E+06 8.59E+02
Equatorial
radius[m] 6.38E+06 7.15E+07 6.03E+07 2.56E+07 2.48E+07 1.14E+06

Stationary
orbit[m] 4.22E+07 1.59E+08 1.09E+08 8.47E+07 9.37E+07 1.84E+07

Proximity
radius r0[m]

3.84E+08
(Moon)

1.28E+08
(Metis～)

1.34E+08
(Pan～)

4.98E+07
(Cordelia～)

4.82E+07
(Naiad～)

1.96E+08
(Charon～)

0
1

r
r 29.97 0.97-14.92 1.81-24.54 2.83-58.06 2.56(?)-81.03 150.94-274.61

4. Conclusion

The gravity force is very similar to the electronic force but has 3 times power. The planet

arrangement is similar to the electron arrangement but is little influenced by its inner planet.
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