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Abstract

In this paper, we discuss the deduction of 4-dimensional equation of motion which

is relativistic invariant.

Contents:
In §1 for preliminaries we mention the modified Maxwell’ s equation in which we have
the time—component of electromagnhetic field and use the matrix-vector and

relativistic form".
In §2 we consider two forces which is caused by a charge and a mass respectively.
These forces are similar in the inverse square law. We improve and push forward the

similarity to the potential, field and force.

In §3 we can deduce the 4-dimensional equation of motion which is relativistic



invariant. And in the following paper, this equation contains Kepler’ s Law and its

complex components explain the relativistic effect.

§ 1. Coulomb-Lorentz Force

In the previous paper?, we can represented Maxwell’ s equation and its force as a
4-dimensional matrix vector.

Let E=E—icB be an electric and magnetic field as a complex 3—dimensional field
in space and E,—icB, (B,=0) the time—component.

Then we have a relation of a matrix—vector between 4-dimensional potential

(¢, A) and electromagnetic field (E,,E—icB) as follows:
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Where signs “+”,”—“ mean relativistic invariant V.

We compare the components of this relation, then.
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Where the above underlined part is a time—component.

0 )
¢+dIVCA:0 and a Coulomb gauge

And we have a Lorenz gauge E[:—
oct
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And the Maxwell’ s equation is as follows:

-0 ew)



+

% +div(E—icB)
oct

O(E —icB)

+gradE, —irot(E—icB
P gradE, ( )

rotE + oc8 = Qeee(4)
oct

diveB = 0sse(5)

. oE
diVE +—= = pees(6)’
ot pe(6)

OE ]
rotcB —— —gradE, = jees(7)’
oo JradE =) (7)

Where the above underlined part is a derivative of time—component.
Therefore the Coulomb—Lorentz force to the moving charge in electromagnetic field

is as follows:
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F =qE,+j-E—ij-cB (the variation of energy)
F=qE+jE, +jxcB—i(qcB—jxE) (the variation of momentum)’

Where the above underlined part is a complex force.

§ 2. Coulomb—Lorentz force and gravitational one

1
We consider the 4-dimensional potential ¢(X,Y,z)=—

€ . . .
— (&, is a dielectric
€,

constant) and A(X,Y,Z) =0 which are caused by the stationary (negative) charge

Then the 4-dimensional electromagnetic field (E,,E—icB) is given by the above

formula (*),
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That is, the electric field is
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And the magnetic field and the time—component are

B=0 and E =0.

) dct d
And we put (@, J) = (067 Go7B) = (2 u, L) where U, == =cy u=—r =cyp.
C C dr dr

Then by the above formula (**), the Coulomb-Lorentz force which acts on the moving
charge ((,]) in the electromagnetic field is
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The above underlined part is a complex force.

We compare this force and the gravitational one which is caused by the stationary mass

“M?” (for simplicity) as follows:
GM

> and gravitation force f s
r

The relation of its potential U =
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Where y=-1= = (1), G is a gravitational constant and C is a light
= ¢ cdr Vo
1-(2)
C
velocity.

This gravitational force f is quite similar to the real part of the Coulomb—Lorentz

0 ,e
i_(—)ut—i (imaginary part).
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Therefore, we get the 4-dimentional force (f,,f) which is caused by the stationary
mass “M 7, that is, the potential is
GM
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And 1its gravitational field is
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Therefore we get the 4-dimentional gravitational force as follows;
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That is,



_Gm, 6 M (the variation of energy)

t =
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The above underlined part is a complex force and its interpretation is in the

following paper.

§3. The 4-dimensional equation of motion which is relativistic invariant

In the above discussion, we had correspond the source (negative) charge “—e€” to

the source mass M , the moving charge (,]J)=(0,7,0,78) to the moving mass

of the Coulomb-Lorentz force to the

(myy,myyB) and the constant
4ne,

gravitational constant — -
C

Then we get the modified equation of motion.

Theorem 1

The equation of motion which is relativistic invariant is
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We replace —=— € (potential of “negative” stationary charge), ((,]) which is
r Are,r
(Y GM

(potential of stationary mass),

“positive moving charge” as ——== >
r cr
(Mmyy,Mmyyf) which is “moving mass” in the formula (k%)

And by this replacement, we get the 4-dimensional gravitational force as follows:
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Where the underlined part is a 4-dimensional gravitational field.




And we integrate this formula by time then
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means a variation of energy-momentum

™ ]

Therefore we get the modified equation of motion as follows;
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We can rewrite the coordinate (X,Y,Z) by the spherical polar coordinate (r,8,¢),that
18,

X=rsingcos¢

y=rsinésing.
Z=rcosé
Then we get

Corollary 2

The equation of motion at the spherical polar coordinate is

d? ct __ Mg dr det
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Proof:

(1) : Formula (1) is the same one

And by the proposition 3 below, we get the formulas (2),,(3),,(4), as follows:

By the theorem 1
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(2), : The component of r-direction is
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Therefore by the proposition 3. («,) ,we get
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(3),: The component of rd@ direction is
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Therefore by the proposition 3. (@,),we get
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(4),: The component of rsin@de- direction is
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Therefore by the proposition 3. (« ¢) ,we get
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Q.E.D.



Proposition 3

The acceleration vector at the spherical polar coordinate is

e (% F —ro” —rg’sin’ @
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Proof

We use the spherical polar coordinate (r,0,¢).
Let’ s 8=6(r) and ¢=¢(r) (the function of proper time 7)
be two angles as a right figure.

Then the spherical polar coordinate (r,0,¢) is

X=rsin@cos¢
y=rsingsing.
Z=rcosd

And we can represent the position vector as follows;

X cosg¢ —sing 0)( cosd 0 singd)\(0
y|=|sing cos¢g O 0 1 0 0.
z 0 0 1)l -sin@ 0 cos@)\r

r

. do ; d o .
And let’ s 9(7)::Ef— and ¢(T)::Efé be derivatives by the parameter z (proper time).
T T
Then we can represent the velocity vector as fol lows;

X —sing —cos¢ 0) cos@ 0 sin@d) 0
F=|y|=| cos¢g —sing O 0 1 O 0
Z 0 0 0)-sin@ 0 cosé ) ré

cos¢g —sing 0\ -sind 0 cos@ \( O

+| sing cos¢g O 0 0 0 0
0 0 1)l-cos@ 0 —sin@)\ré
cos¢p —sing 0) cosé® 0 sind\(0
+| sing cos¢g O 0 1 0 (|0
0 0 1){-sin@ 0 cos@)\r
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For this calculation, we used the following relation;
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0 -1 0) cos@ O sind cosd 0O sind 0 —-cosd O
1 0 O 0 1 0 |= 0 1 0 cosd 0 sind |.
0 0 O/)\-sin@ 0 cos@ -sind 0 cosé 0 -sin@ 0

And
—-sind 0 cosé@ cos@ 0 sin@) 0 0 1
0 0 0 = 0 1 0 0 0O

—-cos@® 0 -sin@ -sind 0 cos@d)l-1 0 O
Therefore

v, ro

v, |=| rsingg

Vv, r

is a velocity vector at the spherical polar coordinate

.. d% o di _—
And let’ s 9(1)::2;—5 and ¢(T)::EI—5 be double derivatives by the parameter
T T
7 (proper time).

Then we can represent the acceleration vector as follows;

%) (—sing —cosg 0) cos® O sind\ rgo
F=|y|=| cos¢g -sing 0| O 1 O [ rg°sind
7 0 0 0)\-sind@ 0 cosd )
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cosg -sing O [cose 0 sind) 0 —cosd® O roo

= 5|n¢ cos¢ 0 cosé 0 siné || rg*sin@
—sin@ 0 cos@)l 0 —sind O )
cosg —sing 0)( cosd O sin@)(0 0 1 re?
+|sing cos¢g O 1 0 0 0 0} rgdsing

0 0 1/{-sin@ 0 cos@){-1 0 O ro
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+| sing cos¢g O 0 r¢sm9+r¢sm9+r¢90056?
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2¢0+r0 —rg*sin@cos o
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Therefore
a, 270 +10 —rg*sind cos &
a, |=| 2¢gsin@ +rgsin 0+ 2rg6 coso
a, F —rf> —rg’sin’ @

is an acceleration vector at the spherical polar coordinate

Q.ED.
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