The Equation of Gravitational Force and the Electromagnetic Force

the Electromagnetic Force (under the relativistic invariant)

Yoshio TAKEMOTO**

Department of Mechanical and Electrical Engineering, School of Engineering, Nippon Bunri University

Abstract

In this paper, we discuss the deduction of 4-dimensional equation of motion which is relativistic invariant.

Contents:

In § 1 for preliminaries we mention the modified Maxwell's equation in which we have the time-component of electromagnetic field and use the matrix-vector and relativistic form¹⁾.

In § 2 we consider two forces which is caused by a charge and a mass respectively. These forces are similar in the inverse square law. We improve and push forward the similarity to the potential, field and force.

In § 3 we can deduce the 4-dimensional equation of motion which is relativistic invariant. And in the following paper, this equation contains Kepler's Law and its complex components explain the relativistic effect.

§ 1. Coulomb-Lorentz Force

In the previous paper¹⁾, we can represent Maxwell's equation and its force as a 4-dimensional matrix vector. Let $\mathbf{E} = \mathbf{E} - ic\mathbf{B}$ be an electric and magnetic field as a complex 3-dimensional field in space and $E_t - icB_t$ ($B_t = 0$) he time-component.

Then we have a relation of a matrix-vector between 4-dimensional potential (ϕ, \mathbf{A}) and electromagnetic field $(E_l, \mathbf{E} - ic\mathbf{B})$ as follows:

$$\begin{bmatrix}
E_t \\
\mathbf{E} - ic\mathbf{B}
\end{bmatrix}^{+} = \begin{bmatrix}
\partial ct \\
-\partial \mathbf{r}
\end{bmatrix}^{-+} \begin{pmatrix} \phi \\
-c\mathbf{A}
\end{bmatrix}^{+}$$

$$= \begin{bmatrix}
\frac{\partial \phi}{\partial ct} + divc\mathbf{A} \\
-\frac{\partial c\mathbf{A}}{\partial ct} - \operatorname{grad}\phi - i\operatorname{rotc}\mathbf{A}
\end{bmatrix}^{+} \cdots (*)$$

Where signs "+", "-" mean relativistic invariant1).

We compare the components of this relation, then.

$$\begin{cases} \underline{E_t} = \frac{\partial \phi}{\partial ct} + divc \mathbf{A} \cdots (1) \\ \mathbf{E} = -\frac{\partial c \mathbf{A}}{\partial ct} - \operatorname{grad} \phi \cdots (2) \\ c \mathbf{B} = \operatorname{rot} c \mathbf{A} \cdots (3) \end{cases}$$

Where the above underlined part is a time-component.

And we have a Lorenz gauge $E_t = \frac{\partial \phi}{\partial ct} + divc\mathbf{A} = 0$ and a Coulomb gauge $E_t = \frac{\partial \phi}{\partial ct} (\Leftrightarrow divc\mathbf{A} = 0)$.

And the Maxwell's equation is as follows:

$$\begin{pmatrix} \rho \\ -\mathbf{j} \end{pmatrix}^{+} = \begin{pmatrix} \partial ct \\ \partial \mathbf{r} \end{pmatrix}^{+-} \begin{pmatrix} E_{t} \\ \mathbf{E} - ic \mathbf{B} \end{pmatrix}^{+}$$

$$= \begin{pmatrix} \frac{\partial E_{t}}{\partial ct} + div (\mathbf{E} - ic \mathbf{B}) \\ \frac{\partial (\mathbf{E} - ic \mathbf{B})}{\partial ct} + \operatorname{grad} E_{t} - i \operatorname{rot} (\mathbf{E} - ic \mathbf{B}) \end{pmatrix}^{+}$$

$$\left[\operatorname{rot} \mathbf{E} + \frac{\partial c \mathbf{B}}{\partial ct} = 0 \cdots (4) \right]$$

$$\begin{cases}
\operatorname{rot} \mathbf{E} + \frac{\partial c \mathbf{B}}{\partial ct} = 0 \cdots (4) \\
\operatorname{divc} \mathbf{B} = 0 \cdots (5) \\
\operatorname{div} \mathbf{E} + \frac{\partial E_{t}}{\partial ct} = \rho \cdots (6)' \\
\operatorname{rotc} \mathbf{B} - \frac{\partial \mathbf{E}}{\partial ct} - \operatorname{grad} E_{t} = \mathbf{j} \cdots (7)'
\end{cases}$$

Where the above underlined part is a derivative of time-component.

Therefore the Coulomb-Lorentz force to the moving charge in electromagnetic field is as follows:

$$\begin{bmatrix}
F_t \\
F
\end{bmatrix} = \begin{bmatrix}
E_t \\
\mathbf{E} - ic\mathbf{B}
\end{bmatrix}^{+-} \begin{pmatrix} q \\
\mathbf{j}
\end{pmatrix}$$

$$= \begin{bmatrix}
E_t q + (\mathbf{E} - i\underline{c}\mathbf{B}) \cdot \mathbf{j} \\
E_t \mathbf{j} + (\mathbf{E} - i\underline{c}\mathbf{B}) \cdot q - i (\mathbf{E} - ic\mathbf{B}) \times \mathbf{j}
\end{bmatrix}^{--} \dots (**),$$

$$\begin{cases} F_{t} = qE_{t} + \mathbf{j} \cdot \mathbf{E} - i \mathbf{j} \cdot c\mathbf{B} & \text{(the variation of energy)} \\ \mathbf{F} = q\mathbf{E} + \mathbf{j}E_{t} + \mathbf{j} \times c\mathbf{B} - i \left(qc\mathbf{B} - \mathbf{j} \times \mathbf{E}\right) & \text{(the variation of momentum)} \end{cases}$$

Where the above underlined part is a complex force.

§ 2. Coulomb-Lorentz force and gravitational one

We consider the 4-dimensional potential $\phi(x, y, z) = \frac{1}{4\pi\varepsilon_0} \frac{e}{r} (\varepsilon_0)$ is a dielectric constant and A(x, y, z) = 0 which are caused by the stationary charge "e".

Then the 4-dimensional electromagnetic field $(E_t, E-icB)$ is given by the above formula (*).

$$\begin{bmatrix} E_t & \\ & \mathbf{E} - ic \mathbf{B} \end{bmatrix}^+ = \begin{bmatrix} \partial ct & \\ & -\partial \mathbf{r} \end{bmatrix}^{-+} \begin{bmatrix} \frac{1}{4\pi\varepsilon_0} \frac{e}{\mathbf{r}} & \\ & 0 \end{bmatrix}^+ = \frac{1}{4\pi\varepsilon_0} \begin{bmatrix} 0 & \\ & -\frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{\mathbf{r}} \right) \end{bmatrix}^+.$$

That is, the electric field is

^{*}平成20年6月13日受理

^{**}日本文理大学工学部機械電気工学科 教授

$$\mathbf{E} = -\frac{1}{4\pi\varepsilon_0} \frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{r} \right) = \frac{e}{4\pi\varepsilon_0 r^2} \frac{\mathbf{r}}{r}.$$

And the magnetic field and the time-component are

 $\mathbf{B} = \mathbf{0}$ and $E_t = 0$.

And we put
$$(q, \mathbf{j}) = (q_0 \gamma, q_0 \gamma \beta) = \left(\frac{q_0}{c} u_t, \frac{q_0}{c} \mathbf{u}\right)$$
 where $u_t = \frac{dct}{dt} = c\gamma$, $\mathbf{u} = \frac{d\mathbf{r}}{dt} = c\gamma \beta$.

Then by the above formula (**), the Coulomb-Lorentz force which acts on the moving charge (q, j) in the electromagnetic field is

$$\begin{aligned} & \left(F_{t} \right)^{-} = \left(\frac{\partial ct}{\partial \mathbf{r}} \right)^{-1} \left(\frac{1}{4\pi\varepsilon_{0}} \frac{e}{\mathbf{r}} \right)^{+} \frac{q_{0}}{c} \left(u_{t} \right) \\ & = \frac{1}{4\pi\varepsilon_{0}} \left(0 \right)^{-} \left(\frac{e}{r} \right) \left(\frac{e}{r} \right)^{+} \frac{q_{0}}{c} \left(u_{t} \right)^{-} \\ & = \frac{q_{0}}{4\pi\varepsilon_{0}c} \left(-\frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{r} \right) \cdot \mathbf{u} \right) \\ & -\frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{r} \right) u_{t} + i \frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{r} \right) \times \mathbf{u} \right)^{-} \cdots \quad (* * *), \\ & \left\{ F_{t} = -\frac{q_{0}}{4\pi\varepsilon_{0}c} \frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{r} \right) \cdot \mathbf{u} \right. \quad \text{(the variation of energy)} \\ & \left\{ \mathbf{F} = -\frac{q_{0}}{4\pi\varepsilon_{0}c} \frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{r} \right) u_{t} + i \frac{q_{0}}{4\pi\varepsilon_{0}c} \frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{r} \right) \times \mathbf{u} \right. \quad \text{(the variation of momentum)}. \end{aligned}$$

The above underlined part is a complex force.

We compare this force and the gravitational one which is caused by the stationary mass "M" (for simplicity) as follows:

The relation of its potential $U = \frac{G}{c^2} \frac{M}{r}$ and gravitational force f is

$$\mathbf{f} = -m_0 \frac{\partial U}{\partial \mathbf{r}} = -m_0 \frac{\gamma}{2} \frac{\partial U}{\partial \mathbf{r}} = -\frac{Gm_0}{c^2} \frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r}\right) u_t.$$

Where $\underline{r} = \frac{u_t}{c} = \frac{dct}{c \cdot dr} = \frac{1}{\sqrt{1 - \left(\frac{\nu}{c}\right)^2}} (= 1)$, G is a gravitational constant and c is a light velocity.

This gravitational force f is quite similar to the real part of the Coulomb-Lorentz one

$$\mathbf{F} = -\frac{q_0}{4\pi\epsilon_0 c} \frac{\partial}{\partial \mathbf{r}} \left(\frac{e}{r}\right) u_t + i \text{ (imaginary part)},$$

Therefore, we get the 4-dimentional force (f_i, \mathbf{f}) which is caused by the stationary mass "M", that is, the potential is

$$\begin{pmatrix} U \\ 0 \end{pmatrix}^{+} = \begin{pmatrix} \frac{GM}{c^{2}r} \\ 0 \end{pmatrix}^{+}$$
 which is corresponding to
$$\begin{pmatrix} \frac{1}{4\pi\epsilon_{0}} \frac{e}{r} \\ 0 \end{pmatrix}^{+}$$

And its gravitational field is

$$\begin{bmatrix} -\left(\frac{\partial ct}{c^2} & -\frac{\partial \mathbf{r}}{c^2}\right)^{-1} & \left(\frac{G}{c^2} \frac{M}{r} & \mathbf{0}\right)^{+1} = \frac{G}{c^2} \begin{bmatrix} 0 & -\frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r}\right) \end{bmatrix}^{+1} \end{bmatrix}$$

Therefore we get the 4-dimentional gravitational force as follows:

$$\begin{pmatrix} f_{t} \\ f \end{pmatrix} = \begin{pmatrix} \partial ct \\ -\partial \mathbf{r} \end{pmatrix}^{-1} \begin{pmatrix} \frac{G}{c^{2}} \frac{M}{r} \\ 0 \end{pmatrix}^{+1} \frac{m_{0}}{c} \begin{pmatrix} u_{t} \\ \mathbf{u} \end{pmatrix}^{-1} \\
= \frac{G}{c^{2}} \begin{pmatrix} 0 \\ -\frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r} \right) \end{pmatrix}^{+1} \frac{m_{0}}{c} \begin{pmatrix} u_{t} \\ \mathbf{u} \end{pmatrix}^{-1} \\
= \frac{Gm_{0}}{c^{3}} \begin{pmatrix} -\frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r} \right) \cdot \mathbf{u} \\ -\frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r} \right) \mathbf{u}_{t} + i \frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r} \right) \times \mathbf{u} \end{pmatrix} .$$

That is

$$\begin{cases} f_{t} = -\frac{Gm_{0}}{c^{3}} \frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r} \right) \cdot \mathbf{u} & \text{(the variation of energy)} \\ \mathbf{f} = -\frac{Gm_{0}}{c^{3}} \frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r} \right) u_{t} + i \frac{Gm_{0}}{c^{3}} \frac{\partial}{\partial \mathbf{r}} \left(\frac{M}{r} \right) \times \mathbf{u} & \text{(the variation of momentum)} \end{cases}$$

The above underlined part is a complex force and its interpretation is in the following paper

§ 3. The 4-dimensional equation of motion which is relativistic invariant

In the above discussion, we had correspond the source charge e to the source mass M, the moving charge $(q, \mathbf{j}) = (q_0 \gamma, q_0 \gamma \beta)$ to the moving mass $(m_0 \gamma, m_0 \gamma \beta)$ and the constant $\frac{1}{4\pi\epsilon_0}$ of the Coulomb-Lorentz force to the gravitational constant $\frac{G}{c^2}$. Then we get the modified equation of motion.

Theorem 1

The equation of motion which is relativistic invariant is

$$\begin{cases} \frac{d^2ct}{dr^2} = -\frac{M_G}{r^2} \left(\frac{\mathbf{r}}{r} \cdot \frac{d\mathbf{r}}{dr}\right) \frac{dct}{d\tau} \cdots (1)_{ct} \\ \frac{d^2\mathbf{r}}{d\tau^2} = -\frac{M_G}{r^2} \frac{\mathbf{r}}{r} \left(\frac{dct}{d\tau}\right)^2 + i \frac{M_G}{r^2} \left(\frac{\mathbf{r}}{r} \times \frac{d\mathbf{r}}{d\tau}\right) \frac{dct}{d\tau} \cdots (2)_r + i \left\{(3)_\theta + (4)_\phi\right\}. \end{cases}$$

Proof

We replace $\frac{Q}{r} = \frac{1}{4\pi\varepsilon_0} \frac{e}{r}$ (potential of "negative" stationary charge), $(q, \mathbf{j}) = (q_0 \gamma, q_0 \gamma \beta)$ which is "positive moving charge" as $\frac{M_G}{r} = \frac{G}{c^2} \frac{M}{r}$ (potential of stationary mass), $(m_0 \gamma, m_0 \gamma \beta)$ which is "moving mass" in the formula (***).

And by this replacement, we get the 4-dimensional gravitational force as follows:

$$\begin{bmatrix} f_t \\ f \end{bmatrix} = \begin{bmatrix} \partial ct \\ -\partial \mathbf{r} \end{bmatrix}^{-1} \begin{pmatrix} \underline{M_G} \\ r \\ 0 \end{bmatrix}^{+} \frac{m_0}{c} \begin{pmatrix} u_t \\ \mathbf{u} \end{bmatrix}, \quad M_G = \frac{GM}{c^2}.$$

Where the underlined part is a 4-dimensional gravitational field And we integrate this formula by time then

$$\int_{t_0}^{t} \left(f_t - \int_{t_0}^{t} c dt \right)^{-1} c dt = \int_{t_0}^{t} \left(\frac{\partial ct}{\partial r} - \partial r \right)^{-1} \left(\frac{M_G}{r} - \int_{0}^{t} \frac{m_0}{r} \left(\frac{u_t}{u} \right)^{-1} c dt$$

means a variation of energy-momentum

$$\begin{bmatrix} -\binom{m_0\gamma}{m_0\gamma\beta} \end{bmatrix}^{-1}_{t_0}^t$$

Therefore we get the modified equation of motion as follows:

$$m_0 \frac{d}{d\tau} \begin{pmatrix} \frac{dct}{d\tau} & \\ & \frac{d\mathbf{r}}{d\tau} \end{pmatrix}^- = c \frac{d}{d\tau} \begin{pmatrix} m_0 \gamma & \\ & m_0 \gamma \beta \end{pmatrix}^-$$

$$= M_G m_0 \begin{pmatrix} \partial ct & \\ & -\partial \mathbf{r} \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{r} & \\ & 0 \end{pmatrix}^+ \begin{pmatrix} \frac{dct}{d\tau} & \\ & \frac{d\mathbf{r}}{d\tau} \end{pmatrix}^- \frac{dct}{d\tau}$$

$$= -\frac{M_G m_0}{r^2} \begin{pmatrix} \frac{\mathbf{r}}{r} \cdot \frac{d\mathbf{r}}{d\tau} \end{pmatrix} \begin{pmatrix} \frac{dct}{d\tau} & \\ & \frac{\mathbf{r}}{r} \begin{pmatrix} \frac{dct}{d\tau} \end{pmatrix}^2 - i \begin{pmatrix} \frac{\mathbf{r}}{r} \times \frac{d\mathbf{r}}{d\tau} \end{pmatrix} \begin{pmatrix} \frac{dct}{d\tau} \end{pmatrix}^-$$

Q.E.D.

We can rewrite the coordinate (x, y, z) by the spherical polar coordinate (r, θ, ϕ) , that is,

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

Then we get

Corollary 2

The equation of motion at the spherical polar coordinate is

$$\begin{cases} \frac{d^2ct}{d\tau^2} = -\frac{M_G}{r^2} \frac{dr}{d\tau} \frac{dct}{d\tau} \cdots (1)_{ct} \\ \frac{d^2r}{d\tau^2} = -\frac{M_G}{r^2} \left(\frac{dct}{d\tau}\right)^2 + \frac{1}{r} \left(r \frac{d\theta}{d\tau}\right)^2 + \frac{1}{r} \left(r \sin\theta \frac{d\phi}{d\tau}\right)^2 \cdots (2)_r \\ \frac{d}{d\tau} \left(r \frac{d\theta}{d\tau}\right) = -i \frac{M_G}{r^2} \left(r \sin\theta \frac{d\phi}{d\tau}\right) \frac{dct}{d\tau} - \frac{1}{r} \frac{dr}{d\tau} \left(r \frac{d\theta}{d\tau}\right) + \cos\theta \frac{d\phi}{d\tau} \left(r \sin\theta \frac{d\phi}{d\tau}\right) \cdots i (3)_{\theta} \\ \frac{d}{d\tau} \left(r \sin\theta \frac{d\phi}{d\tau}\right) = i \frac{M_G}{r^2} \left(r \frac{d\theta}{d\tau}\right) \frac{dct}{d\tau} - \frac{1}{r} \frac{dr}{d\tau} \left(r \sin\theta \frac{d\phi}{d\tau}\right) - \cos\theta \left(r \frac{d\theta}{d\tau}\right) \frac{d\phi}{d\tau} \cdots i (4)_{\phi} \end{cases}.$$

Proof:

 $(1)_{ct}$: Formula $(1)_{ct}$ is the same one

And by the proposition 3 below, we get the formulas $(2)_r$, $(3)_\theta$, $(4)_\phi$ as follows :

By the theorem 1

$$\frac{d^{2}\mathbf{r}}{d\tau^{2}} = -\frac{M_{G}}{r^{2}}\frac{\mathbf{r}}{r}\left(\frac{dct}{d\tau}\right)^{2} + i\frac{M_{G}}{r^{2}}\left(\frac{\mathbf{r}}{r} \times \frac{d\mathbf{r}}{d\tau}\right)\frac{dct}{d\tau}...(2)_{r} + i\left((3)_{\theta} + (4)_{\phi}\right),$$

$$\frac{d\mathbf{r}}{d\tau} = \begin{pmatrix} \nu_{r} \\ \nu_{\theta} \\ \nu_{\phi} \end{pmatrix} = \begin{pmatrix} \dot{r} \\ r\dot{\theta} \\ r\sin\theta\dot{\phi} \end{pmatrix} \text{ and } \frac{\mathbf{r}}{r} \times \frac{d\mathbf{r}}{d\tau} = \begin{pmatrix} 0 \\ -r\sin\theta\dot{\phi} \\ r\dot{\theta} \end{pmatrix}$$

 $(2)_r$: The component of r-direction is

$$\alpha_r = \frac{d^2 \mathbf{r}}{d\tau^2} \cdot \frac{\mathbf{r}}{|\mathbf{r}|} = -\frac{M_C}{r^2} \left(\frac{dct}{d\tau}\right)^2$$
 (where " · " is an inner product).

Therefore

$$-\frac{M_C}{r^2} \left(\frac{dct}{d\tau}\right)^2 = \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2 \theta$$
$$= \frac{d^2r}{d\tau^2} - \frac{1}{r} \left(r\frac{d\theta}{d\tau}\right)^2 - \frac{1}{r} \left(r\sin\theta \frac{d\phi}{d\tau}\right)^2$$

(3)_{θ}: The component of $rd\theta$ -direction is

$$a_{\theta} = \frac{d^2 \mathbf{r}}{d\tau^2} \cdot \frac{rd \theta}{|rd\theta|} = -i \frac{M_C}{r^2} \left(r \sin \theta \frac{d\phi}{d\tau} \right) \frac{dct}{d\tau}$$

Therefor

$$-i\frac{M_{C}}{r^{2}}\left(r\sin\theta\frac{d\phi}{d\tau}\right)\frac{dct}{dr} = 2\dot{r}\dot{\theta} + r\ddot{\theta} - r\dot{\phi}^{2}\sin\theta\cos\theta$$

$$= \frac{1}{r}\frac{dr}{d\tau}\left(r\frac{d\theta}{d\tau}\right) + \frac{d}{d\tau}\left(r\frac{d\theta}{d\tau}\right) - \cos\theta\frac{d\phi}{d\tau}\left(r\sin\theta\frac{d\phi}{d\tau}\right)$$

 $(4)_{\phi}$: The component of $r \sin \theta d\phi$ -direction is

$$\alpha_{\phi} = \frac{d^{2}\mathbf{r}}{d\tau^{2}} \cdot \frac{r \sin \theta d \phi}{|r \sin \theta d \phi|} = i \frac{M_{G}}{r^{2}} \left(r \frac{d\theta}{d\tau} \right) \frac{dct}{d\tau}.$$

Therefore

$$i\frac{M_G}{r^2} \left(r\frac{d\theta}{d\tau} \right) \frac{dct}{d\tau} = 2r\dot{\phi} \sin\theta + r\ddot{\phi} \sin\theta + 2r\dot{\phi}\dot{\theta} \cos\theta$$
$$= \frac{1}{r} \frac{dr}{d\tau} \left(r\sin\theta \frac{d\phi}{d\tau} \right) + \frac{d}{d\tau} \left(r\sin\theta \frac{d\phi}{d\tau} \right) + \cos\theta \left(r\frac{d\theta}{d\tau} \right) \frac{d\phi}{d\tau}$$

Q.E.D.

Proposition 3

The acceleration vector at the spherical polar coordinate is

$$\frac{d^2\Gamma}{dr^2} = \begin{pmatrix} \alpha_r \\ \alpha_\theta \\ \alpha_\phi \end{pmatrix} = \begin{pmatrix} \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2\theta \\ 2\dot{r}\dot{\theta} + r\ddot{\theta} - r\dot{\phi}^2 \sin\theta \cos\theta \\ 2\dot{r}\dot{\phi} \sin\theta + r\ddot{\phi} \sin\theta + 2\dot{r}\dot{\phi}\dot{\theta}\cos\theta \end{pmatrix}$$

Proof

We use the spherical polar coordinate (r, θ, ϕ) .

Let's $\theta = \theta(\tau)$ and $\phi = \phi(\tau)$ (the function of proper time)

be two angles as a right figure. Then the spherical polar coordinate (r, θ, ϕ) is

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}.$$

And we can represent the position vector as follows;

$$\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ r \end{pmatrix}.$$

And let's $\dot{\theta}(\tau) = \frac{d\theta}{d\tau}$ and $\dot{\phi}(\tau) = \frac{d\phi}{d\tau}$ be derivatives by the parameter τ (proper time).

Then we can represent the velocity vector as follows:

$$\begin{split} \dot{\mathbf{r}} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} -\sin\phi & -\cos\phi & 0 \\ \cos\phi & -\sin\phi & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ + \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\sin\theta & 0 & \cos\theta \\ 0 & 0 & 0 \\ -\cos\theta & 0 & -\sin\theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \\ + \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \dot{r} \end{pmatrix} \\ = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} (\cos\phi & \cos\theta) \\ (\cos\phi & -\sin\phi) \\ (\cos\phi & -\sin\phi) \\ (\cos\phi & \cos\phi) \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} r\dot{\theta} \\ r\dot{\phi} \sin\theta \\ r\dot{\phi} \sin\theta \\ r\dot{\phi} \sin\theta \end{pmatrix} \\ = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} r\dot{\theta} \\ r\dot{\phi} \sin\theta \\ r\dot{\phi} \sin\theta \\ r\dot{\phi} \sin\theta \end{pmatrix}$$

For this calculation, we used the following relations

$$\begin{pmatrix} -\sin\phi & -\cos\phi & 0 \\ \cos\phi & -\sin\phi & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -\sin\theta & 0 & \cos\theta \\ 0 & 0 & 0 \\ -\cos\theta & 0 & -\sin\theta \end{pmatrix} = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} .$$

And

$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} \begin{pmatrix} 0 & -\cos \theta & 0 \\ \cos \theta & 0 & \sin \theta \\ 0 & -\sin \theta & 0 \end{pmatrix}$$

Therefore

√r sin θdø

$$\begin{pmatrix} \nu_{\theta} \\ \nu_{\phi} \\ \nu_{r} \end{pmatrix} = \begin{pmatrix} r\dot{\theta} \\ r\sin\theta\dot{\phi} \\ \dot{r} \end{pmatrix}$$

is a velocity vector at the spherical polar coordinate.

And let's $\ddot{\theta}(\tau) = \frac{d^2\theta}{d\tau^2}$ and $\ddot{\phi}(\tau) = \frac{d^2\phi}{d\tau^2}$ be double derivatives by parameter τ .

Then we can represent the acceleration vector as follows:

$$\begin{split} \ddot{\mathbf{r}} = \begin{pmatrix} \ddot{\mathbf{z}} \\ \ddot{\mathbf{y}} \\ \end{pmatrix} = \begin{pmatrix} -\sin\phi & -\cos\phi & 0 \\ \cos\phi & -\sin\phi & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} r\dot{\phi}\dot{\theta} \\ r\dot{\phi}^2 \sin\theta \\ r\dot{\phi} \end{pmatrix} \\ + \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\sin\theta & 0 & \cos\theta \\ 0 & 0 & 0 \\ -\cos\theta & 0 & -\sin\theta \end{pmatrix} \begin{pmatrix} r\dot{\theta}^2 \\ r\dot{\phi}\dot{\theta}\sin\theta \\ \dot{r}\dot{\phi}\sin\theta + r\dot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta \\ 0 & 0 & 1 \end{pmatrix} \\ + \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} \dot{r}\dot{\phi}\sin\theta + r\dot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta \\ \dot{r}\dot{\phi}\sin\theta + r\dot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta \\ \dot{r}\dot{\phi}\sin\theta + \dot{r}\dot{\phi}\sin\theta \\ \dot{r}\dot{\phi}\sin\theta + \dot{r}\dot{\phi}\sin\theta \end{pmatrix} \\ = \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 & -\cos\theta & 0 \\ \cos\theta & 0 & \sin\theta \\ 0 & -\sin\theta & 0 \end{pmatrix} \begin{pmatrix} r\dot{\phi}\dot{\theta} \\ r\dot{\phi}\sin\theta \\ \dot{r}\dot{\phi}\sin\theta \end{pmatrix} \\ + \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} r\dot{\phi}\dot{\theta}\sin\theta \\ \dot{r}\dot{\phi}\sin\theta + r\dot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta \\ \dot{r}\dot{\theta}\sin\theta + r\dot{\phi}\sin\theta + r\dot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta \\ \dot{r}\dot{\phi}\sin\phi + r\dot{\phi}\sin\theta + r\dot{\phi}\sin\theta + r\dot{\phi}\dot{\theta}\cos\theta \\ \dot{r}\dot{\phi}\sin\phi + r\dot{\phi}\sin\theta + r\dot{\phi}\sin\theta$$

Therefore

$$\begin{pmatrix} \alpha_{\dot{\theta}} \\ \alpha_{\dot{\theta}} \\ \alpha_{r} \end{pmatrix} = \begin{pmatrix} 2\dot{r}\dot{\theta} + r\ddot{\theta} - r\dot{\phi}^{2} \sin\theta \cos\theta \\ 2\dot{r}\dot{\phi} \sin\theta + r\ddot{\phi} \sin\theta + 2r\dot{\phi}\dot{\theta} \cos\theta \\ \ddot{r} - r\dot{\theta}^{2} - r\dot{\phi}^{2} \sin^{2}\theta \end{pmatrix}$$

is an acceleration vector at the spherical polar coordinate. $\ensuremath{\mathsf{QE.D.}}$

References

- (1) Y. Takemoto, New Notation and Relativistic Form of the 4-dimensional Vector in Time-Space, Bull. of NBU Vol. 34, No. 1 (2006–Mar.) pp. 32–38.
- (2) Y.Takemoto, A New Form of Equation of Motion for a Moving Charge and the Lagrangian, Bull. of NBU Vol. 35, No. 1 (2007–Mar.) pp. 1–9.