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Abstract

In our previous paper, we presented a new notion, ~ matrix—vector” , which is a
vector where the function of matrix product has been added [(8) Y. Takemoto, Bull.
of NBU Vol. 34, No.1 (2006-Mar.) p.32].

In this paper, as an application of the matrix-vectors, we deduce an equation of

motion represented by matrix for a moving charge in an electromagnetic field.

Contents:
In §1, using a traditional variational method, we deduce (A)the usual
4-dimensional momentum and (B) equation of motion from the Lagrangian. Now we rewrite

its momentum and equation into the matrix—vector form.

In §2, forpreliminaries, we review (A)the matrix—vector and (B)its Lorentz form.
Now we define the variation of the matrix—vector and investigate its meaning by

comparing this variation with the usual one (Jd¢, OA).

In 8§83, we denote the Lagrangian by the matrix—vector form and use the variational
method. Then we can get the equation of motion which is represented by matrix—vector
form.

New features of this equation are



(1) New effects of the time components E0 of the electric field appear.
(2) The 4-dimensional complex force appears.

(3) The relativistic invariance of the equation is apparent.

§1. Introduction

We put the Lagrangians L and L, which are for time dt and for proper time

ds =/(dct)® —(dr)® respectively, that is,

L =—mc? 1—V2+ (A-v—
- C_2 q . ¢)J

L, :—mc+g(cA-E—¢u—°),
c c "¢

u _det_ 1 u_dr_

The actions of these Lagrangians are as follows:

S =jb{—mc+9(cA.E—¢ﬁ)}ds=jtz{—mcz,ﬁ—ﬁ+q(A-v—¢)}dt.
a c c ¢ 4 c

Further we put the variations.

5¢:d—¢50t+grad¢-5r, 5A:d—A§ct+divA5r ------ (k) .
dct dct

And we use the relation uoz—-uzzzcz, then

ods=u,d(oct)—ud(or), S u,—o(UWu=0-++ -+ - - (k3k) .
We get (A)the usual generalized momentum and (B)equation of motion to the moving
charge Q with the mass M in the electromagnetic field as follows:
(A) The generalized momentum is

oL mv
P=—=——+0A=p+0A.
. q p+q

LV

o2
The generalized energy is

mc?

E=P.V-L=—+Qd=¢+0¢.
VZ
e

And the relation between them is



2\2

(E-q¢)’ - (Pc—0A)* =& —(pc)” = (mc?)”.

(B) The equation of motion is

d oL
o) ar

The left side term is

d oL, oP dp q,o
2 (== - d)A
dtay ot dt e lar v -gran)A).

The right side term is

% =gradL = qgrad(A-v)—qgrad¢ = q((v-grad)A + vxrotA)—qgrade -

Therefore we get the equation of motion of moving charge in the electromagnetic
field.

dp oA
— =—q(—+grad rotA,
ot Q(at +gradg) +qvx

=qE+q%ch—iq[cB—%xE].

where E= —%—gradqﬁ B =rotA.

The underlined imaginary part is the term which we have added.

eV
Using &°—(pc)® =(mc?)? and p=—, we get
c

de_, dp
dt dt ’

:v-(qE+q%ch)—v-iq[cB—%><E],

=qv-E—igv-cB.
We can rewrite these equations by using the matrix-vector as follows:

gv.E—iﬂv-cB

&
— c C

C
at p qE+qucB—iq[cB—XxE]
C c



§2. Preliminaries and notations.
In this section, we review (I)—(A)a matrix—vector and (B)its Lorentz form. Now

we define (II)the variation of the matrix—vector.

(I)-(A) A matrix-vector. 9%

A

A

We identify the 4-dimensional vector = A eR* and the u(l)— matrix??
al7 A
A

and we represent this matrix by a symbol

[A+& &+Wj
A-iA A=A

A = A it a matrix-vector
[ Aj—( (A< Ay AZ)] and call it t tor.

And we complexify the each component A, A, Ay, A,, thatis, we define the symbol

A = A as e matrix ATA AY+iAZ wi complex
[ AH (A A Az)] the et (Ay—iAz A—/’J e

components.

Then the product(4-dimensional vector product) between two matrix—vector is as

A B, ) (AB+AB
[ AJ( Bj_ AB+AB, ~i(AxB) |

And we define A , A and A are each the time part, space
A - A S A

follows:

part and a conjugate? of (A A] respectively.

This conjugate corresponds to the cofactor matrix of matrix (

A+A &+WJ
A i A=A )



Therefore we get the relation:

(B) The Lorentz form. ¥

When a particle moves to the X-direction at the speed V, then we have the Lorentz

transformation:
ct'=y(ct - px)
X'=y(x— fgct) .
y'=y
7'=1
v
where yz;zcosh(a and yf = ¢ =sinh® -
1)’ 1-C)
C Cc

And we can rewrite this transformation by using the matrix:

ct'+x' y+iz') (y(@-p)(ct+Xx) y+iz
[y'—iz‘ ct'—x'j_( y—iz ;/(1+,B)(ct—x)J’

(7= 0 ct+x y+iz\(y, -y 0
Lo y.+y J\y—iz ct—x 0 v.+r. )

where }/+=1/7/—+1=C05h9 and }/_2,/7/—_1:8“’“’]9 .
2 2 2 2

Then we have a relativistic transformation in the matrix-vector form:

1

S ) N e

0

More generally, when a particle moves at a speed v with direction cosine (A, B,C),

then we have the Lorentz form? as follows:



1)5)

(i) The transformation of coordinate matrix—vector and its abbreviation are

(Y O O B O

1)5)

(ii) The transformation of derivative matrix—vector and its abbreviation are

0 0 0

act’ [ act 7 _ | act
_9 o 9 o 0

or’ or or

1) 5)

(iii) The transformation of potential matrix-vector and its abbreviation are

3 (7 (¢ e\ (r .
—CA' Yo —CA Yo —CA
And we call them a Lorentz form.

Using this Lorentz form and the relation (k3k3k), we get

+ + - -

£ “(oct o "(oct C e
¢ or - —or ¢ ’
p —-p

T T

NN BN G N (N S

T T

and

(II) The variation of the matrix—vector.

Using the relation (k k), we get

+ + - -

u u

-0 =0
S C C ,
u



5%y Y _ 5ty Y
c C cC

525 % 4is () x
c C c C c ¢

—O oo (k%)
L0

And the variation of the potential matrix—vector' is

5 -

6 + ¢ + _ + §Ct + E + ¢ +
—cA —5r 0 —cA) |’

or

T

" oct "(E, ' ,
—or E—icB

Another representation of this variation is

5 _
5+ ¢ +: + 5Ct + a + ¢ +
—CcA -5r 2 —cA) "’
or
5Cti+5r'£ + +
_ act or ((/5 J
st L _or 2 _isrx L —oA
or oct or
(5ct%+5r-grad¢)
act
+(5ctdich+5r-%)
oct
+i(5rx£)-A
_ or
OCA 0
—(oct——+(or-—)cA
( oct ( ar) )
op .
—{5ctgrad¢+5r%+|5rxgrad¢}
—i{5ctrotcA+5rx80—A+i(§r><£)><cA}
oct or

where the underlined parts are the usual variation ().




This variation is the extension of the usual variation.

In this variation, some new features appear as follows:

(I) The variation of energy.

(i) The terms 5Ct(a¢t+diVCA):E05Ct and 5r-(grad¢+%):—E-5r are the
C C

s

variation of energy of the charge.

(ii) The term i(5rx§)-CA: i(§ch)-5r:iB-5r is the variation of energy of the
r r

magnetic charge, because we put @, ZIB-5F, then 1B =gradig, (=irotcA) is a

force of the magnetic charge

(II) The variation of momentum.

(i) The term 5ct(grad¢+%):E5ct and the term
C

52 4 (5r- D) A-(rxZyxcA,
ot or

= 5r(%+ divcA) —or x (rotcA),
oct
= E05ct£+ Bxﬁéct

dct dct

are both the variation of momentum of the charge.

(ii) The term —i{5rx(grad¢+%)+5ctrotcA}:i(Ex%—B)&t is the variation
C C

. dr
of momentum to the magnetic charge, because IEXE is a force of the moving magnetic
C

charge.



§ 3 The equation of motion(matrix).

We use the variational method, and can get the following theorem.

Theorem (The equation of motion represented by the matrix—vector)

We define the Lagrangian and its action in the matrix-vector form as follows:

+ +
u0 0

L,=ymc ¢ +4 (¢ J ¢ ,
u c —CA u
C

c

Yo
:jsl mc + 4 (¢ j ¢ ds .
So u C —CA u
.

Then we get the equation of motion represented by the matrix—vector

- - u

& _ R el
d q ¢ . q Eo c
- C +— - . )
ds C cA E—icB u
C

Y

where ( is the charge and M is the mass.

We define
N 4 (U, -
& + + + + —
- U, X ¢ C
P=|c = , A= and U=
—u —CA u
_p —
C
Then we can put the Lagrangian and its action in the matrix—vector form as follows:
+ + - -
Uy Uy
Z0 + + -0
L,=ymc ¢ +4 ¢ ¢ ,
u c —CA u
+ + - -
Uy Uy
~0 + . ~0
St
:j mc | © LA (Y ¢ ds .
So u c —CA u
T

This can be justified as



+ +

L _ _
(1) g(Energy):P-v—L@( 0J=— C [C ] , when charge q=0.
\)
—P
N

(Lagrangian) = (Energy-Momentum) X (Velocity)

(ii) Ly(Lagrangian) = —mc+%(cA.%_¢u_;)

Yy . [ Y
ol Jeclime | © L9 [ ¢
0 u c —CA u
C
N
(Lagrangian)= (Energy-Momentum) X (Velocity)
Then the variation of the action | is
+ + - -
Uy Uy
S
ol=-6 me| © +ﬂ ¢ ¢ ds,
S u| c —CA u
C
.
+ + - -
Yo Yo
S
:—_[ mes | © ¢ ds
So u u
c T
(4, _
+ + | —
S
e 9 ¢ ds
| C —CA u
.
+ + _ -
Uy Yy
S
- mc| © +ﬂ ¢ ) ¢ ds
S C —CA u
C C

T

Therefore, using the relations (%k)’, (sk*)’ and integration by parts, we get

10



Uy
S q ’ oct T EO " Cc
ol=—|"1|— d
J-So C{ ( —5!’} ( EICBJ} E >
T
+I51 i E +ﬂ ¢ (ot _ ds
% | ds n c —CA or
T
’ & ’ + +| -
hd oct
-{ c + 4 ¢ ¢ :
p c —CA or

Using the relation (3¢ %k )’ and the condition of variation as

oct oct 0
R R L R

Lastly we get the following formula:
(st Tal (2 ) (s | g (E '
5I=ISl — c 4 4 0 i
S -or) | ds 0 c cA c E-icB

oct
And this variation Sl is always zero to any variation ( sl
-or

o |C,C

(i)Especially when Or =0, the variation Ol isalways zero to any variation OCt.

Therefore
(e _ N Uy N
— - - (E Tl e 0
i c +ﬂ ¢ _4 0 ) ¢ = < (p).
ds c CA c E-icB u 0
C
.

Especially when 6Ct =0, the variation S8l is always zero to any variation Or.

Therefore

11

o|lc

ds.



By the formulas (A) and (B), we get

- u

(e - - - + =L
LD I I e I 9 (E c | _[°
ds 0 c cA c E—icB u 0)
C
Therefore we get the following equation of motion”:
(e _ . ) ) 7& N
d] [— q (¢ g (Eo c
—|c += == :
ds D c cA c E-icB u

c

This equation means that the 4-dimensional force is the 4-dimensional vector product

between the electromagnetic field and the 4-dimensional velocity.
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