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1. TIntroduction. This is a continuation of [7]. In what follows, we say
for short that a solvable Lie algebra s over R (resp. C) admits a real (tesp. com- I
plex) affine structure if a simply connected real (resp. complex) Lie group with ‘
Lie algebra s operates simply transitively by real (resp. complex) affine transfor-
mations of R” (resp. C), where n=dimg s (resp. dimg £). i
The purpose of this note is to prove the following | ‘

THEOREM. Let b be a Borel subalgebra, ie., a maximal solvable sub-
algebra of a complex semi-simple Lie algebra § and s a maximal solvable sub- i
algebra of a non-compact real semi- s;mple Lie algebra g. ‘ !

" Then we have

1. © admits a complex affine structure.

2. s admits a real affine structure.

If there is no danger of confusion, we say simply affine structures without
mentioning real or complex structures. Let I be a Lie algebra over C. When
we regard I as a Lie algebra over R, we denote it by IR, Then it is easy to see that
BR is a maximal solvable subalgebra of 4% and conversely for any maximal solva-
ble subalgebra s of §® there exists a Borel subalgebra b of § such that 5=DR,
Furthermore a complex affine structure of b induces a real affine structure of b“
. So, in case of g=§®, (2) follows from (1). N

We thank to Professor M. Goto for his suggestion to the real case. Our
original paper dealt only with a class of maximal solvable subalgebras associated
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with the Iwasawa decomposition of g, which are similar to Bore! subalgebras.
We also thank to Professor H. Matsumoto who informed us of his result on the
conjugacy classes of maximal solvable subalgebras of real semi-simple Lie algebras

[31.

2. Proof of (1). Let § be a complex semi-simple Lie algebra, ) a Cartan
subalgebra of § and 4=4(§, h) the set of all non-zero roots with respect to b.
As usual, we introduce a lexicographic order and let 4+ (resp. I ={o;,..., 0,}) be
the set of all positive roots (resp. the fundamental system of roots) with respect
to this order. Put ii* = Z‘_ﬁ §2, where §¢ denotes the root space corresponding

to ac 4*. Then b=#" ;Ig) is called a Borel subalgebra. Fvery maximal solva-
ble subalgebra of § is conjugate, under an inner automorphism of §, to the above
standard b (cf. [2]). So it is sufficient to show that the above b admits an affine
structure.

i
Each a e 4* is written uniquely as «= Y m,o, (m, =0, integers). Now we
k=1 .

|al=i

i
define a gradation of fi* by setting fif = 3 §%, where we put |e|= 3 my for
k=1

o= i ma,ed?.  Let I be the set {i= z!] Hy; El ma, e 4+}.  Then {fi}; i1}
giveI;__; gradation of fit by positive inte;;s andk Hf)l preserves the gradation, ie.,
fit=3 i} (direct sum), [iif, i} < iy, and ad (B)if citf. Therefore b=ii*+h
satisﬁee{s the properties stated in §1 of [7]. Consequently b admits a complex

affine structure by the theorem of [7]. As a real algebra, bR admits a real affine
structure (cf. [7]). Thus the proof of (1) is completed.

3. Proof of (2). Let g be a non-compact real semi-simple Lie algebra and
s a maximal solvable subalgebra of g. Contrary fo the complex case, there are
finitely many conj'ugacy classes of maximal solvable subalgebras of g and they
were classified completely by H. Matsumoto [3].

Let g be the complexification of a. An element X of g is said to be nilpotent
(resp. semi-simple, real semi-simple) if ad X is an endomorphism of g which is
nilpotent (resp. semi-simple, semi-simple with real eigen-values). Let H be a
real semi-simple element of g. We denote by go(H), g.(H) and g4(H) the sums
of subspaces of g corresponding to zero, positive and non-negative eigen-values
of ad H respectively.. For a subspace [ of g, [ denotes the orthogonal subspace
of I with respect to the Killing form of g. Let g=%+p be a Cartan decomposition,
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i~ a maximal abelian subspace of p and % the positive Weyl chamber of )~with
respect to I~

®={H; Hely, {y,, H)=20 forany vy,ell-}.

For the precise definition of [, see [3].
Under the above situation, we summarize here some results in [3] which are
necessary for our later argument.

(a) Let m be a parabolic subalgebra of g, i.e., Mg contains a Borel sub-
algebra of go. Then m=g.(H) for some real semi-simple element H and con-
versely g.(H) is parabolic for any real semi-simple element H.

(b) Every real semi-simple element of g is conjugate to some element of
%. Therefore every parabolic subalgebra is conjugate to some g,(H) (He %)
under an inner automorphism of g.

(c) Let s be a maximal solvable subalgebra of g, n its ideal composed of
nilpotent elements and m the normalizer of n in g. Then m=n' and m is the
smallest parabolic subalgebra of g which contains s. Conversely let m be a
parabolic subalgebra and s a maximal solvable subalgebra of m. Then s is
also. maximal in g,

Now we shall prove (2). Let g and s be as in (2) of Theorem and m the
smallest parabolic subalgebra which contains s. By virtue of (b), we can as-
sume, without loss of generality, m=g.,(H)>s (He¥). Let r be the radical of
m and ¢’ a maximal semi-simple subalgebra of m: m=tr+g¢’. Then s=r+4sn¢g’
and s N g’ is a Cartan subalgebra of a' (cf. [3]).

First assume n=(0), where 1 is the ideal composed of nilpotent elements of
s. Then by (¢), m=nt=gqg. It follows that t={0), g'=g and snNg'=sng=s is
a Cartan subalgebra of g'=g. Therefore s is abelian and consequently s admits
an affine structure. Precisely speaking, s is a compact Cartan subalgebra in this
case (cf. [3]).

Next assume 11#(0). Then ms#g by (c) and as mentioned in the proof of
Lemma 3.1 in [3], s possesses a non-zero real semi-simple element. We may
assume that H is in €. Then go(H) is reductive. So gy(H)=¢,+ gy, Where ¢,
is the center of go(H) and gy is the derived algebra of ao(F) which is semi-simple.
Since s contains the radical t of m, v contains the nilpotent ideal a.(H) of mt and
s is a maximal solvable subalgebra of m, it is easy to see that s=cg+5,+q.(H)
for some maximal solvable subalgebra s, of g (and conversely any maximal
solvable subalgebra of m is of this form). Now we shall show by induction on
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dim g that 5 admits an affine siructure. If dim g=3, then dims=1 or 2. In
this case s admits an affine structure (cf. [5]). Assume (2) is true for any g and
for any maximal solvable subalgebra s of g such that dimg=n,. Let n (>ng)
be the least positive integer such that there exists a non-compact real semi-simple
Lie algebra g whose dimension is equal to n. Let g be any one of such algebras,
that is, g such that dim g=n, and s any maximal solvable subalgebra of g. We
may assume without loss of generality that n+#(0). Then as mentioned above
we have s=co+50+g,(H). Since n5(0), it follows that g, (H)+(0) and dim g
=dim g—dim g+(H)<dimg. Then by induction assumption, s, admits an
affine structure, that is, there exists an affine representation p,,: 5o—a(q) such that
the analytic subgroup G(g) of A(g) operates simply transitively on R?, where
A(g) is the affine transformation group of RY, a(q) is its Lie algebra and g=
dim sy. With respect to a suitable basis of sy, p,(¥) (Yes,) is represented by
the following matrix:
v(¥) )
5 ;

where Ay(Y)eal(g, R) and v(Y)=*(v,(Y),..., v,(Y))eRe. Put D=ad H. Then
D|,+ is a non-singular derivation, which we express again by D. So, by the
lesult due to Scheuneman [4], nt= g+(H) admits an affine structure, that is, there
exists an affine rcpresentatlon Pu+: W a(r) (r= dim ntt)  which satisfies the
same property as p,,. With respect to a suitable ba51s of n+ [ VAR YA en*) is
represented by the following matrix:

Dz )

)

Pt (Z ) = (M
0
where R’ is identified with n*. Using p,, and p,+, we construct an affine repre-
sentation p: s—a(s) (s=dim s) which gives an affine structure of 5. Choose an
arbitrary basis {X,,..., X,} of ¢, and use the above bases of s, and n*. With
respect to this basis of s, define p by

Pao(¥)= (AO(Y)
0

P

0| 0 0 X
' o[ o |o o
P T Tadx ] 0 | S pTdim o),
0 0 0 0 -
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] 0 0
0 | A(Y 0 v(Y)
p(¥)= o) (Yesy),
0 0 |ad Y],- 7
0 0 0 0
¢ 0 0 0
0 0 0 -
Z)y= Zent=g,(H
p(Z) o 1 o [ma.z[pz ( 9+ (H))
0 0 0 0

and extend p by linearity. Then from the shape of p and from the fact that
Psgr P+ are affine structures of So; 1t respectively and the derivation D=ad H
is 2610 On ¢y+5,, it follows that p is a faithful representation and the set of all

‘translation parts of p(s) coincides with the whole Rs (cf. [7]). Finally we have

to show that the analytic subgroup G(s) with Lie algebra p(s) of the affine trans-
formation group A(s) operates transitively on RS. Then the simplicity of its
operation follows (cf. [11, [5], [61). Let v=%ai,..., 8, by,s by, €450, ¢, 1)
by any point of R*=Rs x 1 cRs*! and denote *(0,...,0,0,...,0,0,...,0, 1) by 0

p— S—g— —r——
Then we have
g,0=%ay,...,a,90,...,0,0,.,0, 1),
!
where we put §,= [] expa,p(X,). Since p,, and p, . give affine structures of
k=p
s, and n' respectively, there exist g, e G{g) and g, € G(r) such that

gz't(O: 0 1) 1‘('bh -3 q: 1)

g3-70,..., 0, D="(cq,..., ¢,y 1),
where gr2=k]jl expp;(Y,) for some Y,es, and ga=k]j1 exp p,+(Z;) for some
Zyent. Weputg 2=k1j: exp /{Y,) and §, =k]j1 exp p(Z,). Then from the shape
of p, it follows that
G3-Ga G- 0=v.

This implies the transitivity of G(s). Summing up, p: s—a(s) gives an affine
structure of s. Thus the induction is completed -and (2) is proved.
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